Artificial Life and Robotics

, Volume 12, Issue 1–2, pp 329–334 | Cite as

The emergence of cooperation in the random asynchronous prisoner’s dilemma

  • David Newth
  • David Cornforth
Original Article


The iterated prisoners dilemma (IPD) is a simple model for the study of the emergence of cooperative behavior in populations of selfish individuals. In this work, we challenge the assumption that players move in synchrony, and develop a general Markovian model that allows the study of a wide spectrum of scenarios. Simulations show that the relative timing of player moves, and the reward for mutual cooperation, influences the strategy that eventually dominates the final population. For a synchronous environment, reciprocal behavior appears to be the key to the evolution of cooperation, while in an asynchronous environment, guarded generosity may be a route to the evolution of cooperation.

Key words

Asynchrony Prisoner’s dilemma Evolution of cooperation Evolutionary games Game theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Axelrod R, Hamilton W (1981) The evolution of cooperation. Science 211(4489):1390–1396CrossRefMathSciNetGoogle Scholar
  2. 2.
    Axelrod R (1984) The evolution of cooperation. Basic Books, New YorkGoogle Scholar
  3. 3.
    Milinski M (1987) Tit-for-tat in sticklebacks and the evolution of cooperation. Nature 325:434–435CrossRefGoogle Scholar
  4. 4.
    Dugatkin LA (1988) Do guppies play tit-for-tat during predator inspection visits? Behav Ecol Sociobiol 23:395–399CrossRefGoogle Scholar
  5. 5.
    Godard R (1993) Tit-for-tat amongst neighbouring hooded warblers. Behav Ecol Sociobiol 33:45–50CrossRefGoogle Scholar
  6. 6.
    Packer C (1977) Reciprocal altruism in Papio anubis. Nature 265: 441–443CrossRefGoogle Scholar
  7. 7.
    Molander P (1985) The optimal level of generosity in a selfish uncertain environment. J Conflict Resolution 29:611–618CrossRefGoogle Scholar
  8. 8.
    Nowak MA, Sigmund K (1990) The evolution of stochastic strategies in the prisoner’s dilemma. Acta Appl Math 20:247–265zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Cornforth D, Green DG, Newth D (2005) Ordered asynchronous processes in natural and artificial systems. Physica D 204:70–82CrossRefMathSciNetGoogle Scholar
  10. 10.
    Nowak M, Sigmund K (1992) The alternating prisoner’s dilemma. J Theor Biol 168:219–226CrossRefGoogle Scholar
  11. 11.
    Nowak MA, Sigmund K (1993) A strategy of win-stay, lose-shift that outperforms tit-for-tat in prisoner’s dilemma. Nature 364: 56–58CrossRefGoogle Scholar
  12. 12.
    May RM (1987) More evolution of cooperation. Nature 327: 15–17CrossRefGoogle Scholar
  13. 13.
    Maynard-Smith J (1982) Evolution and the theory of games. Cambridge University Press, CambridgeGoogle Scholar
  14. 14.
    Nowak MA (2006) Evolutionary dynamics. Harvard University Press, CambridgezbMATHGoogle Scholar
  15. 15.
    Frean M (1994) The prisoner’s dilemma without synchrony. Proc R Soc Ser B London 257:75–79CrossRefGoogle Scholar
  16. 16.
    Nowak MA, Bonhoeffer S, May RM (1994) Spatial games and the maintenance of cooperation. Proc Nat Acad Sci 91:4877–4881zbMATHCrossRefGoogle Scholar
  17. 17.
    Huberman BA, Glance NS (1993) Evolutionary games and computer simulations. Proc Natl Acad Sci 90:7716–771zbMATHCrossRefGoogle Scholar

Copyright information

© International Symposium on Artificial Life and Robotics (ISAROB). 2008

Authors and Affiliations

  1. 1.CSIRO Centre for Complex Systems ScienceCSIRO Marine and Atmospheric ResearchCanberraAustralia
  2. 2.School of Information Technology and Electrical EngineeringUniversity of New South WalesCanberraAustralia

Personalised recommendations