Advertisement

Clinicopathological characteristics of circumscribed high-grade astrocytomas with an unusual combination of BRAF V600E, ATRX, and CDKN2A/B alternations

  • Chiaki MurakamiEmail author
  • Yuka Yoshida
  • Tatsuya Yamazaki
  • Ayako Yamazaki
  • Satoshi Nakata
  • Yohei Hokama
  • Shogo Ishiuchi
  • Jiro Akimoto
  • Yukiko Shishido-Hara
  • Yuhei Yoshimoto
  • Nozomi Matsumura
  • Sumihito Nobusawa
  • Hayato Ikota
  • Hideaki Yokoo
Original Article

Abstract

We report four cases of high-grade astrocytoma with a BRAF V600E mutation, ATRX inactivation, and CDKN2A/B homozygous deletion. Children to young adults aged 3–46 presented with a well demarcated contrast-enhancing mass in the supratentorial area. Pathological examination revealed packed growth of short spindle to round polygonal cells including some pleomorphic cells. The tumors had less ability to infiltrate into the adjacent brain parenchyma and presented a circumscribed growth pattern. Mitosis was readily found, accompanied by focal necrosis and/or microvascular proliferation. Tumors were histologically similar in part to pleomorphic xanthoastrocytoma (PXA) or anaplastic PXA, but did not fit criteria for either neoplasm. A BRAF V600E mutation and homozygous deletion of CDKN2A/B were observed, which is similar to the genetic features of PXA or epithelioid glioblastoma, but the additional loss of ATRX nuclear immunoreactivity and absence of TERT promoter mutation were unusual findings, indicating a novel genetic profile. Despite their malignant histological features, all patients had a favorable clinical course and remained alive for 6 months to 28 years under standard medical treatment for malignant glioma. In summary, high grade astrocytomas with BRAF V600E, ATRX, and CDKN2A/B alternations had unique clinicopathological features and may be a novel subset of high grade glioma.

Keywords

High-grade astrocytoma Circumscribed astrocytoma BRAF V600E ATRX CDKN2A/B 

Notes

Acknowledgements

We thank Ms. Machiko Yokota (Gunma University) for her excellent technical assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10014_2019_344_MOESM1_ESM.xlsx (11 kb)
Supplementary file1 (XLSX 10 kb)

References

  1. 1.
    Giannini C, Paulus W, Louis DN, Liberski PP, Figarella-Branger D, Capper D (2016) Pleomorphic xanthoastrocytoma. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO classification of tumors of the central nervous system, 4th edn. IARC Press, Lyon, pp 94–99Google Scholar
  2. 2.
    Koelsche C, Sahm F, Capper D et al (2013) Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol 126:907–915CrossRefGoogle Scholar
  3. 3.
    Korshunov A, Chavez L, Sharma T et al (2018) Epithelioid glioblastomas stratify into established diagnostic subsets upon integrated molecular analysis. Brain Pathol 28:656–662CrossRefGoogle Scholar
  4. 4.
    Nakata S, Horiguchi K, Ishiuchi S et al (2017) A case of high-grade astrocytoma with BRAF and ATRX mutations following a long-standing course over two decades. Neuropathology 4:351–357CrossRefGoogle Scholar
  5. 5.
    Nobusawa S, Lachuer J, Wierinckx A et al (2010) Intratumoral patterns of genomic imbalance in glioblastoma. Brain Pathol 20:936–944Google Scholar
  6. 6.
    Arai M, Nobusawa S, Ikota H, Takemura S, Nakazato Y (2012) Frequent IDH1/2 mutations in intracranial chondrosarcoma: a possible diagnostic clue for its differentiation from chordoma. Brain Tumor Pathol 29:201–206CrossRefGoogle Scholar
  7. 7.
    Gessi M, van de Nes J, Griewank K et al (2014) Absence of TERT promoter mutations in primary melanocytic tumours of the central nervous system. Neuropathol Appl Neurobiol 40:794–797CrossRefGoogle Scholar
  8. 8.
    Schindler G, Capper D, Meyer J et al (2011) Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121:397–405CrossRefGoogle Scholar
  9. 9.
    Watanabe K, Tachibana O, Sato K, Yonekawa Y, Kleihues P, Ohgaki H (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6:217–223CrossRefGoogle Scholar
  10. 10.
    Nakajima N, Nobusawa S, Nakata S et al (2018) BRAF V600E, TERT promoter mutations and CDKN2A/B homozygous deletions are frequent in epithelioid glioblastomas: a histological and molecular analysis focusing on intratumoral heterogeneity. Brain Pathol 28:663–673CrossRefGoogle Scholar
  11. 11.
    Phillips JJ, Gong H, Chen K et al (2018) The genetic landscape of anaplastic pleomorphic xanthoastrocytoma. Brain Pathol 29:85–96CrossRefGoogle Scholar
  12. 12.
    Rodriguez FJ, Brosnan-Cashman JA, Allen SJ et al (2018) Alternative lengthening of telomeres, ATRX loss and H3–K27M mutations in histologically defined pilocytic astrocytoma with anaplasia. Brain Pathol 1:126–140Google Scholar
  13. 13.
    Johnson BE, Mazor T, Hong C et al (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–194CrossRefGoogle Scholar
  14. 14.
    Bettegowda C, Agrawal N, Jiao Y et al (2013) Exomic sequencing of four rare central nervous system tumor types. Oncotarget 4:572–583CrossRefGoogle Scholar
  15. 15.
    Zacher A, Kaulich K, Stepanow S et al (2017) Molecular diagnostics of gliomas using next generation sequencing of a glioma-tailored gene panel. Brain Pathol 27:146–159CrossRefGoogle Scholar
  16. 16.
    Yang RR, Aibaidula A, Wang WW et al (2018) Pediatric low-grade gliomas can be molecularly stratified for risk. Acta Neuropathol 136:641–655CrossRefGoogle Scholar
  17. 17.
    Reinhardt A, Stichel D, Schrimpf D et al (2018) Anaplastic astrocytoma with piloid features, a novel molecular class of IDH wildtype glioma with recurrent MAPK pathway, CDKN2A/B and ATRX alterations. Acta Neuropathol 136:273–291CrossRefGoogle Scholar
  18. 18.
    Shankar GM, Lelic N, Gill CM et al (2016) BRAF alteration status and the histone H3F3A gene K27M mutation segregate spinal cord astrocytoma histology. Acta Neuropathol 131:147–150CrossRefGoogle Scholar
  19. 19.
    Mackay A, Burford A, Molinari V et al (2018) Molecular, pathological, radiological, and immune profiling of non-brainstem pediatric high-grade glioma from the HERBY Phase II randomized trial. Cancer Cell 33:829–842CrossRefGoogle Scholar
  20. 20.
    Diplas BH, He X, Brosnan-Cashman JA et al (2018) The genomic landscape of TERT promoter wildtype-IDH wildtype glioblastoma. Nat Commun 9:1–11CrossRefGoogle Scholar
  21. 21.
    Pekmezci M, Villanueva-Meyer JE, Goode B et al (2018) The genetic landscape of ganglioglioma. Acta Neuropathol Commun 6:47CrossRefGoogle Scholar
  22. 22.
    Gielen GH, Gessi M, Buttarelli FR et al (2015) Genetic analysis of diffuse high-grade astrocytomas in infancy defines a novel molecular entity. Brain Pathol 25:409–417CrossRefGoogle Scholar
  23. 23.
    Hong B, Banan R, Christians A et al (2018) Cerebellar glioblastoma: a clinical series with contemporary molecular analysis. Acta Neurochir (Wien) 160:2237–2248CrossRefGoogle Scholar
  24. 24.
    Vaubel RA, Caron AA, Yamada S et al (2018) Recurrent copy number alterations in low-grade and anaplastic pleomorphic xanthoastrocytoma with and without BRAF V600E mutation. Brain Pathol 28:172–182CrossRefGoogle Scholar
  25. 25.
    Weber RG, Hoischen A, Ehrler M et al (2006) Frequent loss of chromosome 9, homozygous CDKN2A/p14 ARF /CDKN2B deletion and low TSC1 mRNA expression in pleomorphic xanthoastrocytomas. Oncogene 26:1088–1097CrossRefGoogle Scholar
  26. 26.
    Ceccarelli M, Barthel FP, Malta TM et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164:550–563CrossRefGoogle Scholar
  27. 27.
    Eckel-Passow JE, Lachance DH, Molinaro AM et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372:2499–2508CrossRefGoogle Scholar
  28. 28.
    Hayward NK, Wilmott JS, Waddell N et al (2017) Whole-genome landscapes of major melanoma subtypes. Nature 545:175–180CrossRefGoogle Scholar
  29. 29.
    Landa I, Pozdeyev N, Korch C et al (2019) Comprehensive genetic characterization of human thyroid cancer cell lines: a validated panel for preclinical studies. Clin Cancer Res 147371:2953Google Scholar
  30. 30.
    Yamada SM, Murakami H, Tomita Y et al (2016) Glioblastoma multiforme versus pleomorphic xanthoastrocytoma with anaplastic features in the pathological diagnosis: a case report. Diagn Pathol 11:65CrossRefGoogle Scholar
  31. 31.
    Nakamura T, Fukuoka K, Nakano Y et al (2019) Genome-wide DNA methylation profiling shows molecular heterogeneity of anaplastic pleomorphic xanthoastrocytoma. Cancer Sci 110:828–832CrossRefGoogle Scholar
  32. 32.
    Korshunov A, Ryzhova M, Hovestadt V et al (2015) Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers. Acta Neuropathol 129:669–678CrossRefGoogle Scholar
  33. 33.
    Zhang R, Shi Z, Chen H et al (2016) Biomarker-based prognostic stratifi cation of young adult glioblastoma. Oncotarget 7:5030–5041Google Scholar
  34. 34.
    Mistry M, Zhukova N, Merico D et al (2015) BRAF mutation and CDKN2A deletion define a clinically distinct subgroup of childhood secondary high-grade glioma. J Clin Oncol 33:1015–1022CrossRefGoogle Scholar
  35. 35.
    Nguyen AT, Colin C, Nanni-Metellus I et al (2015) Evidence for BRAF V600E and H3F3A K27M double mutations in paediatric glial and glioneuronal tumours. Neuropathol Appl Neurobiol 41:403–408CrossRefGoogle Scholar
  36. 36.
    Chi AS, Batchelor TT, Yang D et al (2016) BRAF V600E mutation identifies a subset of low-grade diffusely infiltrating gliomas in adults. J Clin Oncol 31:233–236CrossRefGoogle Scholar

Copyright information

© The Japan Society of Brain Tumor Pathology 2019

Authors and Affiliations

  • Chiaki Murakami
    • 1
    Email author
  • Yuka Yoshida
    • 1
  • Tatsuya Yamazaki
    • 1
  • Ayako Yamazaki
    • 1
  • Satoshi Nakata
    • 2
  • Yohei Hokama
    • 3
  • Shogo Ishiuchi
    • 3
  • Jiro Akimoto
    • 4
  • Yukiko Shishido-Hara
    • 5
  • Yuhei Yoshimoto
    • 2
  • Nozomi Matsumura
    • 1
  • Sumihito Nobusawa
    • 1
  • Hayato Ikota
    • 1
  • Hideaki Yokoo
    • 1
  1. 1.Department of Human PathologyGunma University Graduate School of MedicineMaebashiJapan
  2. 2.Department of NeurosurgeryGunma University Graduate School of MedicineMaebashiJapan
  3. 3.Department of NeurosurgeryUniversity of the Ryukyus Graduate School of MedicineOkinawaJapan
  4. 4.Department of NeurosurgeryTokyo Medical UniversityTokyoJapan
  5. 5.Department of PathologyTokyo Medical UniversityTokyoJapan

Personalised recommendations