Advertisement

Brain Tumor Pathology

, Volume 34, Issue 2, pp 91–97 | Cite as

A novel all-in-one intraoperative genotyping system for IDH1-mutant glioma

  • Fumiharu OhkaEmail author
  • Akane Yamamichi
  • Michihiro Kurimoto
  • Kazuya Motomura
  • Kuniaki Tanahashi
  • Hiromichi Suzuki
  • Kosuke Aoki
  • Shoichi Deguchi
  • Lushun Chalise
  • Masaki Hirano
  • Akira Kato
  • Yusuke Nishimura
  • Masahito Hara
  • Yukinari Kato
  • Toshihiko Wakabayashi
  • Atsushi Natsume
Original Article

Abstract

IDH1 gene mutation has been demonstrated to be an oncogenic driver in a majority of lower-grade gliomas (LGGs). In contrast to other central nervous neoplasms and normal brain tissue without IDH1 mutation, almost 80% of LGGs exhibit IDH1 mutation. Therefore, expeditious detection of IDH1 mutation is useful, not only for intraoperative diagnosis of these gliomas but also for determination of the border between the tumor and normal brain tissue. In this study, we established a rapid genotyping assay with a simple DNA extraction method, involving only incubation of the tumor specimen with Tris–EDTA buffer, which can be easily performed in an operating room. In all 11 tested cases, we could identify the IDH1 status within 90–100 min intraoperatively. In a case of anaplastic astrocytoma, IDH-mutant, we could detect the tumor border by IDH1 profiling. In addition, with this assay, we could detect IDH1 mutation using cell-free tumor DNA derived from cerebrospinal fluid in a case of glioblastoma, IDH-mutant. Considering that clinical trials of mutated IDH1 inhibitors are ongoing, less-invasive intraoperative IDH1 gene profiling might be useful for decision making of the overall treatment strategy of LGGs. Our assay might be a useful tool for precision medicine and surgery of IDH1-mutant gliomas.

Keywords Diffuse glioma IDH mutation Intraoperative genotyping 

References

  1. 1.
    Suzuki H, Aoki K, Chiba K, Sato Y, Shiozawa Y, Shiraishi Y, Shimamura T, Niida A, Motomura K, Ohka F et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468CrossRefPubMedGoogle Scholar
  2. 2.
    Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, Rheinbay E, Miller CR, Vitucci M, Morozova O et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498CrossRefPubMedGoogle Scholar
  3. 3.
    Ceccarelli M, Barthel FP, Malta TM, Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SM et al (2016) Molecular profiling reveals biologically discrete subsets and pathways of progression in diffuse glioma. Cell 164:550–563CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kurimoto M, Suzuki H, Aoki K, Ohka F, Kondo G, Motomura K, Iijima K, Yamamichi A, Ranjit M, Wakabayashi T et al (2016) Rapid sensitive analysis of IDH1 mutation in lower-grade gliomas by automated genetic typing involving a quenching probe. Cancer Invest 34:12–15CrossRefPubMedGoogle Scholar
  6. 6.
    Wakita S, Yamaguchi H, Miyake K, Mitamura Y, Kosaka F, Dan K, Inokuchi K (2011) Importance of c-kit mutation detection method sensitivity in prognostic analyses of t(8;21)(q22;q22) acute myeloid leukemia. Leukemia 25:1423–1432CrossRefPubMedGoogle Scholar
  7. 7.
    Takahashi H, Mizuta T, Oeda S, Isoda H, Nakashita S, Kawaguchi Y, Izumi N, Hirai M, Kurose K, Iwane S et al (2013) An automated rapid detection system using the quenching probe method for detecting interleukin 28B and inosine triphosphatase single nucleotide polymorphisms in chronic hepatitis C. J Viral Hepat 20:e124–e126CrossRefPubMedGoogle Scholar
  8. 8.
    Suzuki S, Komori M, Hirai M, Ureshino N, Kimura S (2012) Development of a novel, fully-automated genotyping system: principle and applications. Sensors Basel Sensors 12:16614–16627CrossRefPubMedGoogle Scholar
  9. 9.
    Shinjo K, Okamoto Y, An B, Yokoyama T, Takeuchi I, Fujii M, Osada H, Usami N, Hasegawa Y, Ito H et al (2012) Integrated analysis of genetic and epigenetic alterations reveals CpG island methylator phenotype associated with distinct clinical characters of lung adenocarcinoma. Carcinogenesis 33:1277–1285CrossRefPubMedGoogle Scholar
  10. 10.
    Kato Y (2015) Specific monoclonal antibodies against IDH1/2 mutations as diagnostic tools for gliomas. Brain Tumor Pathol 32:3–11CrossRefPubMedGoogle Scholar
  11. 11.
    Ranjit M, Motomura K, Ohka F, Wakabayashi T, Natsume A (2015) Applicable advances in the molecular pathology of glioblastoma. Brain Tumor Pathol 32:153–162CrossRefPubMedGoogle Scholar
  12. 12.
    Fujii Y, Ogasawara S, Oki H, Liu X, Kaneko MK, Takano S, Kato Y (2015) A high-sensitive HMab-2 specifically detects IDH1-R132H, the most common IDH mutation in gliomas. Biochem Biophys Res Commun 466:733–739CrossRefPubMedGoogle Scholar
  13. 13.
    Yamamichi A, Kasama T, Ohka F, Suzuki H, Kato A, Motomura K, Hirano M, Ranjit M, Chalise L, Kurimoto M et al (2016) An immuno-wall microdevice exhibits rapid and sensitive detection of IDH1-R132H mutation specific to grade II and III gliomas. Sci Technol Adv Mater 17:618–625CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL et al. (2008) An integrated genomic analysis of human glioblastoma multiforme. Science (New York, N.Y.) 321:1807–1812.CrossRefGoogle Scholar
  15. 15.
    Kanamori M, Kikuchi A, Watanabe M, Shibahara I, Saito R, Yamashita Y, Sonoda Y, Kumabe T, Kure S, Tominaga T (2014) Rapid and sensitive intraoperative detection of mutations in the isocitrate dehydrogenase 1 and 2 genes during surgery for glioma. J Neurosurg 120:1288–1297CrossRefPubMedGoogle Scholar
  16. 16.
    Shankar GM, Francis JM, Rinne ML, Ramkissoon SH, Huang FW, Venteicher AS, Akama-Garren EH, Kang YJ, Lelic N, Kim JC et al. (2015) Rapid intraoperative molecular characterization of glioma. JAMA Oncol 1:662–667.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tanino M, Sasajima T, Nanjo H, Akesaka S, Kagaya M, Kimura T, Ishida Y, Oda M, Takahashi M, Sugawara T et al (2015) Rapid immunohistochemistry based on alternating current electric field for intraoperative diagnosis of brain tumors. Brain Tumor Pathol 32:12–19CrossRefPubMedGoogle Scholar
  18. 18.
    Louis DN, Perry A, Burger P, Ellison DW, Reifenberger G, von Deimling A, Aldape K, Brat D, Collins VP, Eberhart C et al (2014) International society of neuropathology–Haarlem consensus guidelines for nervous system tumor classification and grading. Brain Pathol 24:429–435CrossRefPubMedGoogle Scholar
  19. 19.
    Jameson JL, Longo DL (2015) Precision medicine–personalized, problematic, and promising. N Engl J Med 372:2229–2234CrossRefPubMedGoogle Scholar
  20. 20.
    Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Pan F, Pelloski CE, Sulman EP, Bhat KP et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer cell 17:510–522CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rohle D, Popovici-Muller J, Palaskas N, Turcan S, Grommes C, Campos C, Tsoi J, Clark O, Oldrini B, Komisopoulou E et al. (2013) An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science (New York, N.Y.) 340:626–630.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Best MG, Sol N, Zijl S, Reijneveld JC, Wesseling P, Wurdinger T (2015) Liquid biopsies in patients with diffuse glioma. Acta Neuropathol (Berl) 129:849–865CrossRefGoogle Scholar
  24. 24.
    De Mattos-Arruda L, Mayor R, Ng CK, Weigelt B, Martinez-Ricarte F, Torrejon D, Oliveira M, Arias A, Raventos C, Tang J et al (2015) Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nature Commun 6:8839CrossRefGoogle Scholar
  25. 25.
    Pentsova EI, Shah RH, Tang J, Boire A, You D, Briggs S, Omuro A, Lin X, Fleisher M, Grommes C et al. (2016) Evaluating cancer of the central nervous system through next-generation sequencing of cerebrospinal fluid. J Clin Oncol Off J Am Soc Clin OncolGoogle Scholar

Copyright information

© The Japan Society of Brain Tumor Pathology 2017

Authors and Affiliations

  • Fumiharu Ohka
    • 1
    Email author
  • Akane Yamamichi
    • 1
    • 3
  • Michihiro Kurimoto
    • 1
  • Kazuya Motomura
    • 1
  • Kuniaki Tanahashi
    • 1
  • Hiromichi Suzuki
    • 1
    • 2
  • Kosuke Aoki
    • 1
    • 2
  • Shoichi Deguchi
    • 1
  • Lushun Chalise
    • 1
  • Masaki Hirano
    • 1
  • Akira Kato
    • 1
  • Yusuke Nishimura
    • 1
  • Masahito Hara
    • 1
  • Yukinari Kato
    • 4
  • Toshihiko Wakabayashi
    • 1
  • Atsushi Natsume
    • 1
  1. 1.Department of NeurosurgeryNagoya UniversityNagoyaJapan
  2. 2.Department of Pathology and Tumor BiologyKyoto UniversityKyotoJapan
  3. 3.Department of NeurosurgeryMie UniversityTsuJapan
  4. 4.Department of Regional InnovationTohoku University Graduate School of MedicineSendaiJapan

Personalised recommendations