Brain Tumor Pathology

, Volume 33, Issue 3, pp 222–227 | Cite as

High incidence of TERT mutation in brain tumor cell lines

  • Tanner M. Johanns
  • Yujie Fu
  • Dale K. Kobayashi
  • Yu Mei
  • Ian F. Dunn
  • Diane D. Mao
  • Albert H. Kim
  • Gavin P. Dunn
Rapid Short communication


TERT promoter gene mutations are highly recurrent in malignant glioma. However, little information exists regarding their presence in experimental brain tumor models. To better characterize systems in which TERT mutation studies could be appropriately modeled experimentally, the TERT promoter was examined by conventional sequencing in primary brain tumor initiating cells (BTIC), two matched recurrent BTIC lines, a panel of established malignant glioma cell lines, and two meningioma cell lines. Telomerase gene expression was examined by quantitative PCR. We found that all glioblastoma BTIC lines harbored a TERT mutation, which was retained in two patient-matched recurrent BTIC. The TERT C228T or C250T mutation was found in 33/35 (94 %) of established malignant glioma cell lines and both meningioma cell lines examined. Brain tumor cell lines expressed variably high telomerase levels. Thus, a high percentage of glioma cell lines, as well as two meningioma cell lines, harbors TERT mutations. These data characterize tractable, accessible models with which to further explore telomerase biology in these tumor types.


TERT Telomerase Glioma Glioblastoma Meningioma Brain tumor initiating cells Cancer 



The authors thank Dr. Ravi Uppaluri for reviewing this manuscript and Dr. Jeffrey Atkinson for technical assistance. This work was supported by NIH grant K08NS092912 (G.P.D.), NIH Grant K08NS081105 (A.H.K.), American Cancer Society-Institutional Research Grant (A.H.K., G.P.D), the Duesenberg Research Fund (A.H.K.), the Physician-Scientist Training Program at Washington University School of Medicine (T.M.J.), and the Brain Science Foundation (I.F.D.).


  1. 1.
    Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996CrossRefPubMedGoogle Scholar
  2. 2.
    Network TCGA (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068CrossRefGoogle Scholar
  3. 3.
    Brennan CW et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Parsons DW et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hahn WC et al (1999) Creation of human tumour cells with defined genetic elements. Nature 400(6743):464–468CrossRefPubMedGoogle Scholar
  6. 6.
    Martinez P, Blasco MA (2011) Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer 11(3):161–176CrossRefPubMedGoogle Scholar
  7. 7.
    Kim NW et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266(5193):2011–2015CrossRefPubMedGoogle Scholar
  8. 8.
    Huang FW et al (2013) Highly recurrent TERT promoter mutations in human melanoma. Science 339(6122):957–959CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bell RJ et al (2015) Cancer. The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer. Science 348(6238):1036–1039CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Killela PJ et al (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA 110(15):6021–6026CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Heidenreich B et al (2014) TERT promoter mutations in cancer development. Curr Opin Genet Dev 24:30–37CrossRefPubMedGoogle Scholar
  12. 12.
    Heidenreich B et al (2015) TERT promoter mutations and telomere length in adult malignant gliomas and recurrences. Oncotarget 6(12):10617–10633CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Labussiere M et al (2014) Combined analysis of TERT, EGFR, and IDH status defines distinct prognostic glioblastoma classes. Neurology 83(13):1200–1206CrossRefPubMedGoogle Scholar
  14. 14.
    Barretina J et al (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603–607CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mao DD et al (2015) A CDC20-APC/SOX2 signaling axis regulates human glioblastoma stem-like cells. Cell Rep 11(11):1809–1821CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Eckel-Passow JE et al (2015) Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med 372(26):2499–2508CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Simon M et al (2015) TERT promoter mutations: a novel independent prognostic factor in primary glioblastomas. Neuro Oncol 17(1):45–52CrossRefPubMedGoogle Scholar
  18. 18.
    Sahm F et al (2016) TERT promoter mutations and risk of recurrence in meningioma. J Natl Cancer Inst 108(5). doi: 10.1093/jnci/djv377
  19. 19.
    Goutagny S et al (2014) High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression. Brain Pathol 24(2):184–189CrossRefPubMedGoogle Scholar
  20. 20.
    Cancer Genome Atlas Research network et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372(26):2481–2498CrossRefGoogle Scholar
  21. 21.
    Stewart SA et al (2002) Telomerase contributes to tumorigenesis by a telomere length-independent mechanism. Proc Natl Acad Sci USA 99(20):12606–12611CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Huang FW et al (2015) TERT promoter mutations and monoallelic activation of TERT in cancer. Oncogenesis 4:e176CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Shankar GM et al (2015) Rapid intraoperative molecular characterization of glioma. JAMA Oncol 1(5):662–667CrossRefPubMedGoogle Scholar
  24. 24.
    Arita H et al (2013) Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathol 126(2):267–276CrossRefPubMedGoogle Scholar
  25. 25.
    Greider CW (2012) Molecular biology. Wnt regulates TERT—putting the horse before the cart. Science 336(6088):1519–1520CrossRefPubMedGoogle Scholar

Copyright information

© The Japan Society of Brain Tumor Pathology 2016

Authors and Affiliations

  1. 1.Division of Oncology, Department of MedicineWashington University School of MedicineSt. LouisUSA
  2. 2.Center for Human Immunology and Immunotherapy ProgramsWashington University School of MedicineSt. LouisUSA
  3. 3.Department of Neurological Surgery, Center for Human Immunology and Immunotherapy ProgramsWashington University School of MedicineSt. LouisUSA
  4. 4.Department of NeurosurgeryBrigham and Women’s HospitalBostonUSA
  5. 5.The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of MedicineSt. LouisUSA

Personalised recommendations