Brain Tumor Pathology

, Volume 32, Issue 3, pp 153–162 | Cite as

Applicable advances in the molecular pathology of glioblastoma

  • Melissa Ranjit
  • Kazuya Motomura
  • Fumiharu Ohka
  • Toshihiko Wakabayashi
  • Atsushi Natsume
Review Article

Abstract

Comprising more than 80 % of malignant brain tumors, glioma has proven to be a daunting cause of mortality in a vast majority of the human population. Progressive and extensive research on malignant glioma has substantially enhanced our understanding of glioma cell biology and molecular pathology. Subtypes of glioma such as astrocytoma and oligodendroglioma are currently grouped together into one pathological class, where they show many differences in histology and molecular etiology. This indicates that it may be beneficial to consider a new and radical subclassification. Thus, we summarize recent developments in glioblastoma multiforme (GBM) subtypes, immunohistochemical analyses useful for diagnoses and the biological evaluation and therapeutic implications of gliomas in this review.

Keywords

Glioma mutations Immunohistochemistry Classification Review 

References

  1. 1.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996PubMedCrossRefGoogle Scholar
  2. 2.
    Chin L, Meyerson M, Aldape K, Bigner D, Mikkelsen T, VandenBerg S et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068CrossRefGoogle Scholar
  3. 3.
    Parsons DW, Jones S, Zhang XS, Lin JCH, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma Multiforme. Science 321(5897):1807–1812PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Kim TM, Huang W, Park R, Park PJ, Johnson MD (2011) A developmental taxonomy of glioblastoma defined and maintained by MicroRNAs. Cancer Res 71(9):3387–3399PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173PubMedCrossRefGoogle Scholar
  8. 8.
    Brennan C, Momota H, Hambardzumyan D, Ozawa T, Tandon A, Pedraza A et al (2009) Glioblastoma subclasses can be defined by activity among signal transduction pathways and associated genomic alterations. PLoS ONE 4(11):e7752PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Brown KE, Chagoya G, Kwatra SG, Yen T, Keir ST, Cooter M et al (2015) Proteomic profiling of patient-derived glioblastoma xenografts identifies a subset with activated EGFR: implications for drug development. J Neurochem 133(5):730–738Google Scholar
  10. 10.
    Motomura K, Natsume A, Watanabe R, Ito I, Kato Y, Momota H et al (2012) Immunohistochemical analysis-based proteomic subclassification of newly diagnosed glioblastomas. Cancer Sci 103(10):1871–1879PubMedCrossRefGoogle Scholar
  11. 11.
    Nicolay DJ, Doucette JR, Nazarali AJ (2007) Transcriptional control of oligodendrogenesis. Glia 55(13):1287–1299PubMedCrossRefGoogle Scholar
  12. 12.
    Hu BY, Du ZW, Li XJ, Ayala M, Zhang SC (2009) Human oligodendrocytes from embryonic stem cells: conserved SHH signaling networks and divergent FGF effects. Development 136(9):1443–1452PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Levine JM, Reynolds R, Fawcett JW (2001) The oligodendrocyte precursor cell in health and disease. Trends Neurosci 24(1):39–47PubMedCrossRefGoogle Scholar
  14. 14.
    Nishiyama A, Lin XH, Giese N, Heldin CH, Stallcup WB (1996) Interaction between NG2 proteoglycan and PDGF alpha-receptor on O2A progenitor cells is required for optimal response to PDGF. J Neurosci Res 43(3):315–330PubMedCrossRefGoogle Scholar
  15. 15.
    Rao RC, Boyd J, Padmanabhan R, Chenoweth JG, McKay RD (2009) Efficient serum-free derivation of oligodendrocyte precursors from neural stem cell-enriched cultures. Stem Cells 27(1):116–125PubMedCrossRefGoogle Scholar
  16. 16.
    Kato Y, Kaneko M, Sata M, Fujita N, Tsuruo T, Osawa M (2005) Enhanced expression of Aggrus (T1alpha/podoplanin), a platelet-aggregation-inducing factor in lung squamous cell carcinoma. Tumour Biol 26(4):195–200PubMedCrossRefGoogle Scholar
  17. 17.
    Kato Y, Sasagawa I, Kaneko M, Osawa M, Fujita N, Tsuruo T (2004) Aggrus: a diagnostic marker that distinguishes seminoma from embryonal carcinoma in testicular germ cell tumors. Oncogene 23(52):8552–8556PubMedCrossRefGoogle Scholar
  18. 18.
    Kato Y, Kaneko MK, Kuno A, Uchiyama N, Amano K, Chiba Y et al (2006) Inhibition of tumor cell-induced platelet aggregation using a novel anti-podoplanin antibody reacting with its platelet-aggregation-stimulating domain. Biochem Biophys Res Commun 349(4):1301–1307PubMedCrossRefGoogle Scholar
  19. 19.
    Hantusch B, Kalt R, Krieger S, Puri C, Kerjaschki D (2007) Sp1/Sp3 and DNA-methylation contribute to basal transcriptional activation of human podoplanin in MG63 versus Saos-2 osteoblastic cells. BMC Mol Biol 8:20PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Stamenkovic I, Yu Q (2009) Shedding light on proteolytic cleavage of CD44: the responsible sheddase and functional significance of shedding. J Invest Dermatol 129(6):1321–1324PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Xu Y, Stamenkovic I, Yu Q (2010) CD44 attenuates activation of the hippo signaling pathway and is a prime therapeutic target for glioblastoma. Cancer Res 70(6):2455–2464PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Martin-Villar E, Fernandez-Munoz B, Parsons M, Yurrita MM, Megias D, Perez-Gomez E et al (2010) Podoplanin associates with CD44 to promote directional cell migration. Mol Biol Cell 21(24):4387–4399PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Le Mercier M, Hastir D, Moles Lopez X, De Neve N, Maris C, Trepant AL et al (2012) A simplified approach for the molecular classification of glioblastomas. PLoS ONE 7:e45475PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Popova SN, Bergqvist M, Dimberg A, Edqvist PH, Ekman S, Hesselager G et al (2014) Subtyping of gliomas of various WHO grades by the application of immunohistochemistry. Histopathology 64(3):365–379PubMedCrossRefGoogle Scholar
  25. 25.
    Conroy S, Kruyt FA, Joseph JV, Balasubramaniyan V, Bhat KP, Wagemakers M et al (2014) Subclassification of newly diagnosed glioblastomas through an immunohistochemical approach. PLoS ONE 9:e115687PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408(6810):307–310PubMedCrossRefGoogle Scholar
  27. 27.
    Louis DN (1994) The p53 gene and protein in human brain tumors. J Neuropathol Exp Neurol 53(1):11–21PubMedCrossRefGoogle Scholar
  28. 28.
    Jenkins RB, Blair H, Ballman KV, Giannini C, Arusell RM, Law M et al (2006) A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 66:9852–9861PubMedCrossRefGoogle Scholar
  29. 29.
    Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP (1994) Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 145(5):1175–1190PubMedCentralPubMedGoogle Scholar
  30. 30.
    Kim YH, Nobusawa S, Mittelbronn M, Paulus W, Brokinkel B, Keyvani K et al (2010) Molecular classification of low-grade diffuse gliomas. Am J Pathol 177(6):2708–2714PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Suzuki A, Nobusawa S, Natsume A, Suzuki H, Kim YH, Yokoo H et al (2014) Olig2 labeling index is correlated with histological and molecular classifications in low-grade diffuse gliomas. J Neurooncol 120(2):283–291PubMedCrossRefGoogle Scholar
  32. 32.
    Schmidt EE, Ichimura K, Reifenberger G, Collins VP (1994) CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 54(24):6321–6324PubMedGoogle Scholar
  33. 33.
    Ruas M, Peters G (1998) The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1378(2):F115–F177PubMedGoogle Scholar
  34. 34.
    Wakabayashi T, Natsume A, Hatano H, Fujii M, Shimato S, Ito M et al (2009) p16 promoter methylation in the serum as a basis for the molecular diagnosis of gliomas. Neurosurgery 64(3):455–461 (discussion 61–62) PubMedCrossRefGoogle Scholar
  35. 35.
    Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170(5):1445–1453PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Doetsch F, Petreanu L, Caille I, Garcia-Verdugo JM, Alvarez-Buylla A (2002) EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36(6):1021–1034PubMedCrossRefGoogle Scholar
  37. 37.
    Ivkovic S, Canoll P, Goldman JE (2008) Constitutive EGFR signaling in oligodendrocyte progenitors leads to diffuse hyperplasia in postnatal white matter. J Neurosci 28(4):914–922PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Jansen M, Yip S, Louis DN (2010) Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers. Lancet Neurol 9(7):717–726PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Weickert CS, Webster MJ, Colvin SM, Herman MM, Hyde TM, Weinberger DR et al (2000) Localization of epidermal growth factor receptors and putative neuroblasts in human subependymal zone. J Comp Neurol 423(3):359–372PubMedCrossRefGoogle Scholar
  40. 40.
    Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H et al (1985) Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313(5998):144–147PubMedCrossRefGoogle Scholar
  41. 41.
    Frederick L, Wang XY, Eley G, James CD (2000) Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60(5):1383–1387PubMedGoogle Scholar
  42. 42.
    Ohno M, Natsume A, Ichiro Iwami K, Iwamizu H, Noritake K, Ito D et al (2010) Retrovirally engineered T-cell-based immunotherapy targeting type III variant epidermal growth factor receptor, a glioma-associated antigen. Cancer Sci 101(12):2518–2524PubMedCrossRefGoogle Scholar
  43. 43.
    Li GH, Wei H, Lv SQ, Ji H, Wang DL (2010) Knockdown of STAT3 expression by RNAi suppresses growth and induces apoptosis and differentiation in glioblastoma stem cells. Int J Oncol 37(1):103–110PubMedCrossRefGoogle Scholar
  44. 44.
    Choi BD, Archer GE, Mitchell DA, Heimberger AB, McLendon RE, Bigner DD et al (2009) EGFRvIII-targeted vaccination therapy of malignant glioma. Brain Pathol 19(4):713–723PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Gerson SL, Trey JE, Miller K, Berger NA (1986) Comparison of O6-alkylguanine-DNA alkyltransferase activity based on cellular DNA content in human, rat and mouse tissues. Carcinogenesis 7(5):745–749PubMedCrossRefGoogle Scholar
  46. 46.
    Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352(10):997–1003PubMedCrossRefGoogle Scholar
  47. 47.
    Mikeska T, Bock C, El-Maarri O, Hubner A, Ehrentraut D, Schramm J et al (2007) Optimization of quantitative MGMT promoter methylation analysis using pyrosequencing and combined bisulfite restriction analysis. J Mol Diagn 9(3):368–381PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Felsberg J, Thon N, Eigenbrod S, Hentschel B, Sabel MC, Westphal M et al (2011) Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int J Cancer 129(3):659–670PubMedCrossRefGoogle Scholar
  49. 49.
    Wick W, Weller M, van den Bent M, Sanson M, Weiler M, von Deimling A et al (2014) MGMT testing–the challenges for biomarker-based glioma treatment. Nat Rev Neurol 10(7):372–385PubMedCrossRefGoogle Scholar
  50. 50.
    Kato T, Natsume A, Toda H, Iwamizu H, Sugita T, Hachisu R et al (2010) Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells. Gene Ther 17(11):1363–1371PubMedCrossRefGoogle Scholar
  51. 51.
    Tsujiuchi T, Natsume A, Motomura K, Kondo G, Ranjit M, Hachisu R et al (2014) Preclinical evaluation of an O(6)-methylguanine-DNA methyltransferase-siRNA/liposome complex administered by convection-enhanced delivery to rat and porcine brains. Am J Transl Res 6(2):169–178PubMedCentralPubMedGoogle Scholar
  52. 52.
    Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462(7274):739–744PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360(8):765–773PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Huse JT, Holland EC (2010) Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma. Nat Rev Cancer 10(5):319–331PubMedCrossRefGoogle Scholar
  56. 56.
    Tsankova NM, Canoll P (2014) Advances in genetic and epigenetic analyses of gliomas: a neuropathological perspective. J Neurooncol 119(3):481–490PubMedCrossRefGoogle Scholar
  57. 57.
    Kato Y, Natsume A, Kaneko MK (2013) A novel monoclonal antibody GMab-m1 specifically recognizes IDH1-R132G mutation. Biochem Biophys Res Commun 432(4):564–567PubMedCrossRefGoogle Scholar
  58. 58.
    Schwartzentruber J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231PubMedCrossRefGoogle Scholar
  59. 59.
    Abedalthagafi M, Phillips JJ, Kim GE, Mueller S, Haas-Kogen DA, Marshall RE et al (2013) The alternative lengthening of telomere phenotype is significantly associated with loss of ATRX expression in high-grade pediatric and adult astrocytomas: a multi-institutional study of 214 astrocytomas. Mod Pathol 26:1425–1432PubMedCrossRefGoogle Scholar
  60. 60.
    Clynes D, Jelinska C, Xella B, Ayyub H, Taylor S, Mitson M et al (2014) ATRX dysfunction induces replication defects in primary mouse cells. PLoS ONE 9:e92915PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Liu XY, Gerges N, Korshunov A, Sabha N, Khuong-Quang DA, Fontebasso AM et al (2012) Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations. Acta Neuropathol 124(5):615–625PubMedCrossRefGoogle Scholar
  62. 62.
    Reuss DE, Sahm F, Schrimpf D, Wiestler B, Capper D, Koelsche C et al (2015) ATRX and IDH1-R132H immunohistochemistry with subsequent copy number analysis and IDH sequencing as a basis for an “integrated” diagnostic approach for adult astrocytoma, oligodendroglioma and glioblastoma. Acta Neuropathol 129(1):133–146PubMedCrossRefGoogle Scholar
  63. 63.
    Shay JW, Wright WE (2011) Role of telomeres and telomerase in cancer. Semin Cancer Biol 21:349–353PubMedCentralPubMedCrossRefGoogle Scholar
  64. 64.
    Arita H, Narita Y, Fukushima S, Tateishi K, Matsushita Y, Yoshida A et al (2013) Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathol 126(2):267–276PubMedCrossRefGoogle Scholar
  65. 65.
    Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA, Jr et al (2013) TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci USA 110:6021–6026PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR et al (2013) The somatic genomic landscape of glioblastoma. Cell 155(2):462–477PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Aubert G, Lansdorp PM (2008) Telomeres and aging. Physiol Rev 88:557–579PubMedCrossRefGoogle Scholar
  68. 68.
    Reitman ZJ, Pirozzi CJ, Yan H (2013) Promoting a new brain tumor mutation: tERT promoter mutations in CNS tumors. Acta Neuropathol 126(6):789–792PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Talbert PB, Henikoff S (2010) Histone variants–ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11:264–275PubMedCrossRefGoogle Scholar
  70. 70.
    Aihara K, Mukasa A, Gotoh K, Saito K, Nagae G, Tsuji S et al (2014) H3F3A K27 M mutations in thalamic gliomas from young adult patients. Neuro Oncol 16:140–146PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Zhou Q, Wang S, Anderson DJ (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25:331–343PubMedCrossRefGoogle Scholar
  72. 72.
    Lu QR, Park JK, Noll E, Chan JA, Alberta J, Yuk D et al (2001) Oligodendrocyte lineage genes (OLIG) as molecular markers for human glial brain tumors. Proc Natl Acad Sci USA 98:10851–10856PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Williams LT (1989) Signal transduction by the platelet-derived growth factor receptor. Science 243(4898):1564–1570PubMedCrossRefGoogle Scholar
  74. 74.
    Nister M, Libermann TA, Betsholtz C, Pettersson M, Claesson-Welsh L, Heldin CH et al (1988) Expression of messenger RNAs for platelet-derived growth factor and transforming growth factor-alpha and their receptors in human malignant glioma cell lines. Cancer Res 48(14):3910–3918PubMedGoogle Scholar
  75. 75.
    Ozerdem U, Stallcup WB (2000) Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis 6:241–249CrossRefGoogle Scholar
  76. 76.
    Calzolari F, Malatesta P (2010) Recent insights into PDGF-induced gliomagenesis. Brain Pathol 20:527–538PubMedCrossRefGoogle Scholar
  77. 77.
    Jiao Y, Killela PJ, Reitman ZJ, Rasheed AB, Heaphy CM, de Wilde RF et al (2012) Frequent ATRX, CIC, FUBP1 and IDH1 mutations refine the classification of malignant gliomas. Oncotarget 3(7):709–722PubMedCentralPubMedGoogle Scholar
  78. 78.
    Sahm F, Koelsche C, Meyer J, Pusch S, Lindenberg K, Mueller W et al (2012) CIC and FUBP1 mutations in oligodendrogliomas, oligoastrocytomas and astrocytomas. Acta Neuropathol 123(6):853–860PubMedCrossRefGoogle Scholar
  79. 79.
    Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV et al (2010) Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 70(22):8981–8987PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Ohka F, Ito M, Ranjit M, Senga T, Motomura A, Motomura K et al (2014) Quantitative metabolome analysis profiles activation of glutaminolysis in glioma with IDH1 mutation. Tumour Biol 35(6):5911–5920PubMedCrossRefGoogle Scholar
  81. 81.
    Komori T, Hirose T, Shibuya M, Suzuki H, Tanaka S, Sasaki A (2013) Controversies over the diagnosis of oligodendroglioma: a report from the satellite workshop at the 4th international symposium of brain tumor pathology, Nagoya Congress Center, May 23, 2012. Brain Tumor Pathol 30(4):253–261PubMedCrossRefGoogle Scholar
  82. 82.
    Sampetrean O, Saya H (2013) Characteristics of glioma stem cells. Brain Tumor Pathol 30(4):209–214PubMedCrossRefGoogle Scholar

Copyright information

© The Japan Society of Brain Tumor Pathology 2015

Authors and Affiliations

  • Melissa Ranjit
    • 1
  • Kazuya Motomura
    • 1
  • Fumiharu Ohka
    • 1
  • Toshihiko Wakabayashi
    • 1
  • Atsushi Natsume
    • 1
  1. 1.Department of NeurosurgeryNagoya University School of MedicineNagoyaJapan

Personalised recommendations