Brain Tumor Pathology

, Volume 31, Issue 4, pp 229–233 | Cite as

Molecular genetics of ependymomas and pediatric diffuse gliomas: a short review

Review Article


Here, we review the recent literature on molecular discoveries in ependymomas and pediatric diffuse gliomas. Ependymomas can now be categorized into three location-related subgroups according to their biological profile: posterior fossa ependymomas, group A (PFA) and B (PFB), and supratentorial ependymomas. Although no recurrently mutated genes were found throughout these groups of ependymomas, PFA exhibited a CpG island methylator phenotype, PFB was associated with extensive chromosomal aberrations, and the C11orf95-RELA fusion gene was frequently observed in supratentorial ependymomas. Meanwhile, it has now become apparent that pediatric diffuse gliomas have a distinct genetic status from their adult counterparts, even though they share an indistinguishable histology. In pediatric low-grade diffuse gliomas, an intragenic duplication of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB/MYBL1 were found recurrently and mutually exclusively. As for non-brainstem high-grade tumors, in addition to H3F3A, TP53, and ATRX mutations, which were frequently observed in older children, recurrent fusions involving NTRK1, NTRK2, and NTRK3 were reported in infants younger than 3 years of age. Moreover, in diffuse intrinsic pontine gliomas (DIPG), recurrent somatic mutations of ACVR1 were found in association with HIST1H3B mutations.


Ependymoma Pediatric diffuse glioma 


Conflict of interest

The authors have no conflict of interest.


  1. 1.
    Witt H, Mack SC, Ryzhova M et al (2011) Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. Cancer Cell 20:143–157PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Mack SC, Witt H, Piro RM et al (2014) Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506:445–450PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Parker M, Mohankumar KM, Punchihewa C et al (2014) C11orf95-RELA fusions drive oncogenic NF-κB signalling in ependymoma. Nature 506:451–455PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Pietsch T, Wohlers I, Goschzik T et al (2014) Supratentorial ependymomas of childhood carry C11orf95-RELA fusions leading to pathological activation of the NF-κB signaling pathway. Acta Neuropathol 127:609–611PubMedCrossRefGoogle Scholar
  5. 5.
    Wani K, Armstrong TS, Vera-Bolanos E et al (2012) A prognostic gene expression signature in infratentorial ependymoma. Acta Neuropathol 123:727–738PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Hoffman LM, Donson AM, Nakachi I et al (2014) Molecular sub-group-specific immunophenotypic changes are associated with outcome in recurrent posterior fossa ependymoma. Acta Neuropathol 127:731–745PubMedCrossRefGoogle Scholar
  7. 7.
    Ohm JE, McGarvey KM, Yu X et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    McGarvey KM, Fahrner JA, Greene E et al (2006) Silenced tumor suppressor genes reactivated by DNA demethylation do not return to a fully euchromatic chromatin state. Cancer Res 66:3541–3549PubMedCrossRefGoogle Scholar
  9. 9.
    Versteeg R (2014) Cancer: tumours outside the mutation box. Nature 506:438–439PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang J, Wu G, Miller CP et al (2013) Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45:602–612PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Rand V, Huang J, Stockwell T et al (2005) Sequence survey of receptor tyrosine kinases reveals mutations in glioblastomas. Proc Natl Acad Sci USA 102:14344–14349PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    The cancer genome atlas research network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068CrossRefGoogle Scholar
  13. 13.
    Singh D, Chan JM, Zoppoli P et al (2012) Transforming fusions of FGFR and TACC genes in human glioblastoma. Science 337:1231–1235PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Parker BC, Annala MJ, Cogdell DE et al (2013) The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J Clin Invest 123:855–865PubMedPubMedCentralGoogle Scholar
  15. 15.
    Jones DT, Hutter B, Jäger N (2013) Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 45:927–932PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ramkissoon LA, Horowitz PM, Craig JM et al (2013) Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1. Proc Natl Acad Sci USA 110:8188–8193PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Wang M, Tihan T, Rojiani AM et al (2005) Monomorphous angiocentric glioma: a distinctive epileptogenic neoplasm with features of infiltrating astrocytoma and ependymoma. J Neuropathol Exp Neurol 64:875–881PubMedCrossRefGoogle Scholar
  18. 18.
    Schwartzentruber J, Korshunov A, Liu XY et al (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 482:226–231PubMedCrossRefGoogle Scholar
  19. 19.
    Sturm D, Witt H, Hovestadt V et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437PubMedCrossRefGoogle Scholar
  20. 20.
    Wu G, Broniscer A, McEachron TA et al (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 44:251–253PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Wu G, Diaz AK, Paugh BS et al (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 46:444–450PubMedCrossRefGoogle Scholar
  22. 22.
    Pollack IF, Finkelstein SD, Burnham J et al (2001) Age and TP53 mutation frequency in childhood malignant gliomas: results in a multi-institutional cohort. Cancer Res 61:7404–7407PubMedGoogle Scholar
  23. 23.
    Frattini V, Trifonov V, Chan JM et al (2013) The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet 45:1141–1149PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Buczkowicz P, Hoeman C, Rakopoulos P et al (2014) Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 46:451–456PubMedCrossRefGoogle Scholar
  25. 25.
    Taylor KR, Mackay A, Truffaux N et al (2014) Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet 46:457–461PubMedCrossRefGoogle Scholar
  26. 26.
    Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J et al (2014) Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet 46:462–466PubMedCrossRefGoogle Scholar

Copyright information

© The Japan Society of Brain Tumor Pathology 2014

Authors and Affiliations

  • Sumihito Nobusawa
    • 1
  • Junko Hirato
    • 2
  • Hideaki Yokoo
    • 1
  1. 1.Department of Human PathologyGunma University Graduate School of MedicineMaebashiJapan
  2. 2.Department of PathologyGunma University HospitalMaebashiJapan

Personalised recommendations