Brain Tumor Pathology

, Volume 32, Issue 1, pp 22–30 | Cite as

Development of a robust and sensitive pyrosequencing assay for the detection of IDH1/2 mutations in gliomas

  • Hideyuki Arita
  • Yoshitaka Narita
  • Yuko Matsushita
  • Shintaro Fukushima
  • Akihiko Yoshida
  • Hirokazu Takami
  • Yasuji Miyakita
  • Makoto Ohno
  • Soichiro Shibui
  • Koichi IchimuraEmail author
Original Article


Assessment of the mutational status of the isocitrate dehydrogenase 1/2 (IDH1/2) gene has become an integral part of the standard diagnostic procedure and, therefore, needs to be accurate. This may, however, be compromised by various factors including the method of analysis and a low tumor cell content. We have developed a rapid, sensitive and robust assay to detect all types of mutation in either IDH1 or IDH2 using pyrosequencing. The efficacy of detecting mutation was evaluated using a panel of control plasmids representing all the different types of IDH1/2 mutation and a set of 160 tumor specimens. The sensitivity of the assays was examined by a serial dilution analysis performed on samples containing various ratios of wild-type and mutant alleles. The pyrosequencing assay detected as little as 5 % of mutant alleles for most mutation types, while conventional Sanger sequencing required the presence of at least 20 % of mutant alleles for identifying mutations. The pyrosequencing assay detected IDH1/2 mutations in three samples which were missed by Sanger sequencing due to their low tumor cell contents. Our assay is particularly useful for the analysis of a large number of specimens as in a retrospective clinical study for example.


Glioma IDH1 IDH2 Pyrosequencing Mutation detection 



The authors thank Dr. Sylvia Kocialkowski for critical reading of the manuscript. This work was supported by JSPS KAKENHI Grant Numbers 24659650 (H. A.), 25462283 (K. I.) and by the National Cancer Center Research and Development Fund 23-A-50 (K. I.).

Supplementary material

10014_2014_186_MOESM1_ESM.xlsx (22 kb)
Supplementary material 1 (XLSX 21 kb)
10014_2014_186_MOESM2_ESM.pptx (106 kb)
Supplementary Figure 1 The pyrograms of IDH1 testing for matched FFPE and frozen samples in representative cases. The peaks indicating R132H mutations (arrow) appeared clearly in the pyrograms for FFPE, and the results were consistent with those for frozen samples (PPTX 106 kb)


  1. 1.
    Agarwal S, Sharma MC, Jha P, Pathak P, Suri V, Sarkar C, Chosdol K, Suri A, Kale SS, Mahapatra AK (2013) Comparative study of IDH1 mutations in gliomas by immunohistochemistry and DNA sequencing. Neuro Oncol 15:718–726CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Arita H, Narita Y, Fukushima S, Tateishi K, Matsushita Y, Yoshida A, Miyakita Y, Ohno M, Collins VP, Kawahara N, Shibui S, Ichimura K (2013) Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss. Acta Neuropathol 126:267–276CrossRefPubMedGoogle Scholar
  3. 3.
    Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602CrossRefPubMedGoogle Scholar
  4. 4.
    Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601CrossRefPubMedGoogle Scholar
  5. 5.
    Choi J, Lee EY, Shin KJ, Minn YK, Kim J, Kim SH (2013) IDH1 mutation analysis in low cellularity specimen: a limitation of diagnostic accuracy and a proposal for the diagnostic procedure. Pathol Res Pract 209:284–290CrossRefPubMedGoogle Scholar
  6. 6.
    Cykowski MD, Allen RA, Fung KM, Harmon MA, Dunn ST (2012) Pyrosequencing of IDH1 and IDH2 mutations in brain tumors and non-neoplastic conditions. Diagn Mol Pathol 21:214–220CrossRefPubMedGoogle Scholar
  7. 7.
    Felsberg J, Wolter M, Seul H, Friedensdorf B, Goppert M, Sabel MC, Reifenberger G (2010) Rapid and sensitive assessment of the IDH1 and IDH2 mutation status in cerebral gliomas based on DNA pyrosequencing. Acta Neuropathol 119:501–507CrossRefPubMedGoogle Scholar
  8. 8.
    Fukushima S, Narita Y, Miyakita Y, Ohno M, Takizawa T, Takusagawa Y, Mori M, Ichimura K, Tsuda H, Shibui S (2013) A case of more than 20 years survival with glioblastoma, and development of cavernous angioma as a delayed complication of radiotherapy. Neuropathology 33:576–581PubMedGoogle Scholar
  9. 9.
    Gravendeel LA, Kloosterhof NK, Bralten LB, van Marion R, Dubbink HJ, Dinjens W, Bleeker FE, Hoogenraad CC, Michiels E, Kros JM, van den Bent M, Smitt PA, French PJ (2010) Segregation of non-p.R132H mutations in IDH1 in distinct molecular subtypes of glioma. Hum Mutat 31:E1186–E1199CrossRefPubMedGoogle Scholar
  10. 10.
    Hartmann C, Meyer J, Balss J, Capper D, Mueller W, Christians A, Felsberg J, Wolter M, Mawrin C, Wick W, Weller M, Herold-Mende C, Unterberg A, Jeuken JW, Wesseling P, Reifenberger G, von Deimling A (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474CrossRefPubMedGoogle Scholar
  11. 11.
    Horbinski C (2013) What do we know about IDH1/2 mutations so far, and how do we use it? Acta Neuropathol 125:621–636CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ichimura K, Pearson DM, Kocialkowski S, Backlund LM, Chan R, Jones DT, Collins VP (2009) IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 11:341–347CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Johnson BE, Mazor T, Hong C, Barnes M, Aihara K, McLean CY, Fouse SD, Yamamoto S, Ueda H, Tatsuno K, Asthana S, Jalbert LE, Nelson SJ, Bollen AW, Gustafson WC, Charron E, Weiss WA, Smirnov IV, Song JS, Olshen AB, Cha S, Zhao Y, Moore RA, Mungall AJ, Jones SJ, Hirst M, Marra MA, Saito N, Aburatani H, Mukasa A, Berger MS, Chang SM, Taylor BS, Costello JF (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193CrossRefPubMedGoogle Scholar
  14. 14.
    Kaneko MK, Morita S, Tsujimoto Y, Yanagiya R, Nasu K, Sasaki H, Hozumi Y, Goto K, Natsume A, Watanabe M, Kumabe T, Takano S, Kato Y (2013) Establishment of novel monoclonal antibodies KMab-1 and MMab-1 specific for IDH2 mutations. Biochem Biophys Res Commun 432:40–45CrossRefPubMedGoogle Scholar
  15. 15.
    Kato Y, Jin G, Kuan CT, McLendon RE, Yan H, Bigner DD (2009) A monoclonal antibody IMab-1 specifically recognizes IDH1R132H, the most common glioma-derived mutation. Biochem Biophys Res Commun 390:547–551CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kato Y, Natsume A, Kaneko MK (2013) A novel monoclonal antibody GMab-m1 specifically recognizes IDH1-R132G mutation. Biochem Biophys Res Commun 432:564–567CrossRefPubMedGoogle Scholar
  17. 17.
    Lee D, Suh YL, Kang SY, Park TI, Jeong JY, Kim SH (2013) IDH1 mutations in oligodendroglial tumors: comparative analysis of direct sequencing, pyrosequencing, immunohistochemistry, nested PCR and PNA-mediated clamping PCR. Brain Pathol 23(3):285–293CrossRefPubMedGoogle Scholar
  18. 18.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Malley DS, Hamoudi RA, Kocialkowski S, Pearson DM, Collins VP, Ichimura K (2011) A distinct region of the MGMT CpG island critical for transcriptional regulation is preferentially methylated in glioblastoma cells and xenografts. Acta Neuropathol 121:651–661CrossRefPubMedGoogle Scholar
  20. 20.
    Mascelli S, Raso A, Biassoni R, Severino M, Sak K, Joost K, Milanaccio C, Barra S, Grillo-Ruggieri F, Vanni I, Consales A, Cama A, Capra V, Nozza P, Garre ML (2012) Analysis of NADP+ -dependent isocitrate dehydrogenase-1/2 gene mutations in pediatric brain tumors: report of a secondary anaplastic astrocytoma carrying the IDH1 mutation. J Neurooncol 109:477–484CrossRefPubMedGoogle Scholar
  21. 21.
    Mikeska T, Bock C, El-Maarri O, Hubner A, Ehrentraut D, Schramm J, Felsberg J, Kahl P, Buttner R, Pietsch T, Waha A (2007) Optimization of quantitative MGMT promoter methylation analysis using pyrosequencing and combined bisulfite restriction analysis. J Mol Diagn 9:368–381CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Morimura T, Neuchrist C, Kitz K, Budka H, Scheiner O, Kraft D, Lassmann H (1990) Monocyte subpopulations in human gliomas: expression of Fc and complement receptors and correlation with tumor proliferation. Acta Neuropathol 80:287–294CrossRefPubMedGoogle Scholar
  23. 23.
    Ogino S, Kawasaki T, Brahmandam M, Yan L, Cantor M, Namgyal C, Mino-Kenudson M, Lauwers GY, Loda M, Fuchs CS (2005) Sensitive sequencing method for KRAS mutation detection by Pyrosequencing. J Mol Diagn 7:413–421CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ronaghi M, Uhlen M, Nyren P (1998) A sequencing method based on real-time pyrophosphate. Science 281(363):365Google Scholar
  25. 25.
    Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F, El Hallani S, Boisselier B, Mokhtari K, Hoang-Xuan K, Delattre JY (2009) Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 27:4150–4154CrossRefPubMedGoogle Scholar
  26. 26.
    Setty P, Hammes J, Rothamel T, Vladimirova V, Kramm CM, Pietsch T, Waha A (2010) A pyrosequencing-based assay for the rapid detection of IDH1 mutations in clinical samples. J Mol Diagn 12:750–756CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Thon N, Eigenbrod S, Kreth S, Lutz J, Tonn JC, Kretzschmar H, Peraud A, Kreth FW (2012) IDH1 mutations in grade II astrocytomas are associated with unfavorable progression-free survival and prolonged postrecurrence survival. Cancer 118:452–460CrossRefPubMedGoogle Scholar
  28. 28.
    van den Bent MJ, Hartmann C, Preusser M, Strobel T, Dubbink HJ, Kros JM, von Deimling A, Boisselier B, Sanson M, Halling KC, Diefes KL, Aldape K, Giannini C (2013) Interlaboratory comparison of IDH mutation detection. J Neurooncol 112:173–178CrossRefPubMedGoogle Scholar
  29. 29.
    von Deimling A, Korshunov A, Hartmann C (2011) The next generation of glioma biomarkers: MGMT methylation, BRAF fusions and IDH1 mutations. Brain Pathol 21:74–87CrossRefGoogle Scholar
  30. 30.
    Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, Kos I, Batinic-Haberle I, Jones S, Riggins GJ, Friedman H, Friedman A, Reardon D, Herndon J, Kinzler KW, Velculescu VE, Vogelstein B, Bigner DD (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yan W, Zhang W, You G, Bao Z, Wang Y, Liu Y, Kang C, You Y, Wang L, Jiang T (2012) Correlation of IDH1 mutation with clinicopathologic factors and prognosis in primary glioblastoma: a report of 118 patients from China. PLoS ONE 7:e30339CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The Japan Society of Brain Tumor Pathology 2014

Authors and Affiliations

  • Hideyuki Arita
    • 1
    • 2
  • Yoshitaka Narita
    • 1
  • Yuko Matsushita
    • 1
  • Shintaro Fukushima
    • 2
  • Akihiko Yoshida
    • 3
  • Hirokazu Takami
    • 2
    • 4
  • Yasuji Miyakita
    • 1
  • Makoto Ohno
    • 1
  • Soichiro Shibui
    • 1
  • Koichi Ichimura
    • 2
    Email author
  1. 1.Department of Neurosurgery and Neuro-OncologyNational Cancer Center HospitalTokyoJapan
  2. 2.Division of Brain Tumor Translational ResearchNational Cancer Center Research InstituteTokyoJapan
  3. 3.Department of Pathology and Clinical LaboratoriesNational Cancer Center HospitalTokyoJapan
  4. 4.Department of NeurosurgeryUniversity of TokyoTokyoJapan

Personalised recommendations