Skip to main content

Advertisement

Log in

Immunoreactivity of Wnt5a, Fzd2, Fzd6, and Ryk in glioblastoma: evaluative methodology for DAB chromogenic immunostaining

  • Original Article
  • Published:
Brain Tumor Pathology Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the influence of Wnt5a and its receptors on the survival of glioblastoma patients and to determine reliable evaluation methods for immunohistochemistry. Diagnostic specimens from 41 histopathologically confirmed primary glioblastoma patients whose Gd-enhanced tumors had been totally removed were immunohistochemically stained for Wnt5a, Fzd2, Fzd6, and Ryk. The immunoreactivity was evaluated using the following methods: (A) grayscale optical density after color deconvolution, (B) percentage of stained cells, (C) density of stained cells, (D) staining amount (multiplication product of B and C), and (E) staining rank. The data sets of A to E were statistically evaluated by correlation matrix analysis and regression analysis. The influence of the expression of the markers on survival was analyzed using a proportional hazard model. The results of color deconvolution (A) were well correlated with the results of the staining rank (E). In the semiquantitative results (B, C, and D), the staining amount (D) tended to show a better correlation with results of color deconvolution (A). Among all data sets, color deconvolution (A) demonstrated the most preferable fit in a proportional hazard model, and the expression of Fzd2 and Fzd6 was associated with poor prognosis in glioblastoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yang Y, Topol L, Lee H, Wu J (2003) Wnt5a and Wnt5b exhibit distinct activities in coordinating chondrocyte proliferation and differentiation. Development 130:1003–1015

    Article  PubMed  CAS  Google Scholar 

  2. Yu JM, Jun ES, Jung JS, Suh SY, Han JY, Kim JY, Kim KW (2007) Role of Wnt5a in the proliferation of human glioblastoma cells. Cancer Lett 257:172–181

    Article  PubMed  CAS  Google Scholar 

  3. Huang Y, Liu G, Zhang B, Xu G, Xiong W, Yang H (2010) Wnt-5a regulates proliferation in lung cancer cells. Oncol Rep 23:177–181

    PubMed  CAS  Google Scholar 

  4. Peng L, Ren LB, Dong G, Wang CL, Xu P, Ye L, Zhou XD (2010) Wnt5a promotes differentiation of human dental papilla cells. Int Endod J 43:404–412

    Article  PubMed  CAS  Google Scholar 

  5. Kamino M, Kishida M, Kibe T, Ikoma K, Iijima M, Hirano H, Tokudome M, Chen L, Koriyama C, Yamada K, Arita K, Kishida S (2011) Wnt-5a signaling is correlated with infiltrative activity in human glioma by inducing cellular migration and MMP-2. Cancer Sci 102:540–548

    Article  PubMed  CAS  Google Scholar 

  6. Laeremans H, Rensen SS, Ottenheijm HC, Smits JF, Blankesteijn WM (2010) Wnt/frizzled signalling modulates the migration and differentiation of immortalized cardiac fibroblasts. Cardiovasc Res 87:514–523

    Article  PubMed  CAS  Google Scholar 

  7. Wouda RR, Bansraj MR, de Jong AW, Noordermeer JN, Fradkin LG (2008) Src family kinases are required for WNT5 signaling through the Derailed/RYK receptor in the Drosophila embryonic central nervous system. Development 135:2277–2287

    Article  PubMed  CAS  Google Scholar 

  8. Miyashita T, Koda M, Kitajo K, Yamazaki M, Takahashi K, Kikuchi A, Yamashita T (2009) Wnt–Ryk signaling mediates axon growth inhibition and limits functional recovery after spinal cord injury. J Neurotrauma 26:955–964

    Article  PubMed  Google Scholar 

  9. Ruifrok AC, Johnston DA (2001) Quantification of histochemical staining by color deconvolution. Anal Quant Cytol Histol 23:291–299

    PubMed  CAS  Google Scholar 

  10. Preusser M, Charles Janzer R, Felsberg J, Reifenberger G, Hamou MF, Diserens AC, Stupp R, Gorlia T, Marosi C, Heinzl H, Hainfellner JA, Hegi M (2008) Anti-O6-methylguanine-methyltransferase (MGMT) immunohistochemistry in glioblastoma multiforme: observer variability and lack of association with patient survival impede its use as clinical biomarker. Brain Pathol 18:520–532

    PubMed  CAS  Google Scholar 

  11. Elmlinger MW, Deininger MH, Schuett BS, Meyermann R, Duffner F, Grote EH, Ranke MB (2001) In vivo expression of insulin-like growth factor-binding protein-2 in human gliomas increases with the tumor grade. Endocrinology 142:1652–1658

    Article  PubMed  CAS  Google Scholar 

  12. Hirano H, Lopes MB, Laws ER Jr, Asakura T, Goto M, Carpenter JE, Karns LR, VandenBerg SR (1999) Insulin-like growth factor-1 content and pattern of expression correlates with histopathologic grade in diffusely infiltrating astrocytomas. Neurooncology 1:109–119

    CAS  Google Scholar 

  13. Viana-Pereira M, Lopes JM, Little S, Milanezi F, Basto D, Pardal F, Jones C, Reis RM (2008) Analysis of EGFR overexpression, EGFR gene amplification and the EGFRvIII mutation in Portuguese high-grade gliomas. Anticancer Res 28:913–920

    PubMed  Google Scholar 

  14. Burel-Vandenbos F, Benchetrit M, Miquel C, Fontaine D, Auvergne R, Lebrun-Frenay C, Cardot-Leccia N, Michiels JF, Paquis-Flucklinger V, Virolle T (2011) EGFR immunolabeling pattern may discriminate low-grade gliomas from gliosis. J Neurooncol 102:171–178

    Article  PubMed  CAS  Google Scholar 

  15. Newcomb EW, Cohen H, Lee SR, Bhalla SK, Bloom J, Hayes RL, Miller DC (1998) Survival of patients with glioblastoma multiforme is not influenced by altered expression of p16, p53, EGFR, MDM2 or Bcl-2 genes. Brain Pathol 8:655–667

    Article  PubMed  CAS  Google Scholar 

  16. Helps SC, Thornton E, Kleinig TJ, Manavis J, Vink R (2012) Automatic nonsubjective estimation of antigen content visualized by immunohistochemistry using color deconvolution. Appl Immunohistochem Mol Morphol 20:82–90

    Article  PubMed  CAS  Google Scholar 

  17. Haas-Kogan DA, Prados MD, Tihan T, Eberhard DA, Jelluma N, Arvold ND, Baumber R, Lamborn KR, Kapadia A, Malec M, Berger MS, Stokoe D (2005) Epidermal growth factor receptor, protein kinase B/Akt, and glioma response to erlotinib. J Natl Cancer Inst 97:880–887

    Article  PubMed  CAS  Google Scholar 

  18. Tilley WD, Lim-Tio SS, Horsfall DJ, Aspinall JO, Marshall VR, Skinner JM (1994) Detection of discrete androgen receptor epitopes in prostate cancer by immunostaining: measurement by color video image analysis. Cancer Res 54:4096–4102

    PubMed  CAS  Google Scholar 

  19. Matkowskyj KA, Schonfeld D, Benya RV (2000) Quantitative immunohistochemistry by measuring cumulative signal strength using commercially available software photoshop and matlab. J Histochem Cytochem 48:303–312

    Article  PubMed  CAS  Google Scholar 

  20. Kaczmarek E, Gorna A, Majewski P (2004) Techniques of image analysis for quantitative immunohistochemistry. Rocz Akad Med Bialymst 49(Suppl 1):155–158

    PubMed  Google Scholar 

  21. Vrekoussis T, Chaniotis V, Navrozoglou I, Dousias V, Pavlakis K, Stathopoulos EN, Zoras O (2009) Image analysis of breast cancer immunohistochemistry-stained sections using ImageJ: an RGB-based model. Anticancer Res 29:4995–4998

    PubMed  CAS  Google Scholar 

  22. Pham NA, Morrison A, Schwock J, Aviel-Ronen S, Iakovlev V, Tsao MS, Ho J, Hedley DW (2007) Quantitative image analysis of immunohistochemical stains using a CMYK color model. Diagn Pathol 2:8

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Matkowskyj KA, Cox R, Jensen RT, Benya RV (2003) Quantitative immunohistochemistry by measuring cumulative signal strength accurately measures receptor number. J Histochem Cytochem 51:205–214

    Article  PubMed  CAS  Google Scholar 

  24. Cornish TC, Halushka MK (2009) Color deconvolution for the analysis of tissue microarrays. Anal Quant Cytol Histol 31:304–312

    PubMed  Google Scholar 

  25. Safadi RA, Musleh AS, Al-Khateeb TH, Hamasha AA (2010) Analysis of immunohistochemical expression of k19 in oral epithelial dysplasia and oral squamous cell carcinoma using color deconvolution-image analysis method. Head Neck Pathol 4:282–289

    Article  PubMed Central  PubMed  Google Scholar 

  26. Mino-Kenudson M, Chirieac LR, Law K, Hornick JL, Lindeman N, Mark EJ, Cohen DW, Johnson BE, Janne PA, Iafrate AJ, Rodig SJ (2010) A novel, highly sensitive antibody allows for the routine detection of ALK-rearranged lung adenocarcinomas by standard immunohistochemistry. Clin Cancer Res 16:1561–1571

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Rizzardi AE, Johnson AT, Vogel RI, Pambuccian SE, Henriksen J, Skubitz AP, Metzger GJ, Schmechel SC (2012) Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagn Pathol 7:42

    Article  PubMed Central  PubMed  Google Scholar 

  28. Yamaguchi TP, Bradley A, McMahon AP, Jones S (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126:1211–1223

    PubMed  CAS  Google Scholar 

  29. Liu W, Li L, Li G, Garritano F, Shanske A, Frenz DA (2008) Coordinated molecular control of otic capsule differentiation: functional role of Wnt5a signaling and opposition by sfrp3 activity. Growth Factors 26:343–354

    Article  PubMed  CAS  Google Scholar 

  30. Nishizuka M, Koyanagi A, Osada S, Imagawa M (2008) Wnt4 and Wnt5a promote adipocyte differentiation. FEBS Lett 582:3201–3205

    Article  PubMed  CAS  Google Scholar 

  31. Paina S, Garzotto D, DeMarchis S, Marino M, Moiana A, Conti L, Cattaneo E, Perera M, Corte G, Calautti E, Merlo GR (2011) Wnt5a is a transcriptional target of Dlx homeogenes and promotes differentiation of interneuron progenitors in vitro and in vivo. J Neurosci 31:2675–2687

    Article  PubMed  CAS  Google Scholar 

  32. Valencia J, Hernandez-Lopez C, Martinez VG, Hidalgo L, Zapata AG, Vicente A, Varas A, Sacedon R (2011) Wnt5a skews dendritic cell differentiation to an unconventional phenotype with tolerogenic features. J Immunol 187:4129–4139

    Article  PubMed  CAS  Google Scholar 

  33. Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, Trent JM (2002) Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1:279–288

    Article  PubMed  CAS  Google Scholar 

  34. Katoh M (2009) Transcriptional mechanisms of WNT5A based on NF-kappaB, Hedgehog, TGFbeta, and Notch signaling cascades. Int J Mol Med 23:763–769

    Article  PubMed  CAS  Google Scholar 

  35. Kurayoshi M, Oue N, Yamamoto H, Kishida M, Inoue A, Asahara T, Yasui W, Kikuchi A (2006) Expression of Wnt-5a is correlated with aggressiveness of gastric cancer by stimulating cell migration and invasion. Cancer Res 66:10439–10448

    Article  PubMed  CAS  Google Scholar 

  36. Sato A, Yamamoto H, Sakane H, Koyama H, Kikuchi A (2010) Wnt5a regulates distinct signalling pathways by binding to Frizzled2. EMBO J 29:41–54

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Keeble TR, Halford MM, Seaman C, Kee N, Macheda M, Anderson RB, Stacker SA, Cooper HM (2006) The Wnt receptor Ryk is required for Wnt5a-mediated axon guidance on the contralateral side of the corpus callosum. J Neurosci 26:5840–5848

    Article  PubMed  CAS  Google Scholar 

  38. Frojmark AS, Schuster J, Sobol M, Entesarian M, Kilander MBC, Gabrikova D, Nawaz S, Baig SM, Schulte G, Klar J, Dahl N (2011) Mutations in Frizzled 6 cause isolated autosomal-recessive nail dysplasia. Am J Hum Genet 88:852–860

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Moskowitz SI, Jin T, Prayson RA (2006) Role of MIB1 in predicting survival in patients with glioblastomas. J Neurooncol 76:193–200

    Article  PubMed  Google Scholar 

  40. Ho DM, Hsu CY, Ting LT, Chiang H (2003) MIB-1 and DNA topoisomerase II alpha could be helpful for predicting long-term survival of patients with glioblastoma. Am J Clin Pathol 119:715–722

    Article  PubMed  CAS  Google Scholar 

  41. Masckauchan TN, Agalliu D, Vorontchikhina M, Ahn A, Parmalee NL, Li CM, Khoo A, Tycko B, Brown AM, Kitajewski J (2006) Wnt5a signaling induces proliferation and survival of endothelial cells in vitro and expression of MMP-1 and Tie-2. Mol Biol Cell 17:5163–5172

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was aided by Grant-in-Aid no. 23592135 to Hirofumi Hirano by the Ministry of Education, Culture, Sports, Science and Technology-Japan. We thank Miss Mai Tokudome for the arrangement of specimens and clinical data.

Ethical standard

This retrospective study was endorsed by the ethics committee on clinical research at Kagoshima University Graduate School (no. 77 in 2010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Hirano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirano, H., Yonezawa, H., Yunoue, S. et al. Immunoreactivity of Wnt5a, Fzd2, Fzd6, and Ryk in glioblastoma: evaluative methodology for DAB chromogenic immunostaining. Brain Tumor Pathol 31, 85–93 (2014). https://doi.org/10.1007/s10014-013-0153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10014-013-0153-1

Keywords

Navigation