Brain Tumor Pathology

, Volume 30, Issue 3, pp 175–179 | Cite as

Progressive adult primary glioblastoma in the medulla oblongata with an unmethylated MGMT promoter and without an IDH mutation

  • Akifumi Yoshikawa
  • Mitsutoshi NakadaEmail author
  • Takuya Watanabe
  • Yutaka Hayashi
  • Hemragul Sabit
  • Yukinari Kato
  • Shioto Suzuki
  • Akishi Ooi
  • Hiroshi Sato
  • Jun-ichiro Hamada
Case Report


A 63-year-old woman presented with dizziness followed by gait disturbance and loss of appetite. Magnetic resonance image (MRI) showed that a lesion located in the medulla oblongata, appearing as hyperintense on T2-weighted image and with slight enhancement area, appeared in the ventral aspect of the mass on T1-weighted MR imaging with gadolinium. It was diagnosed as high-grade brain-stem glioma and the patient underwent chemoradiotherapy. However, she died 18 days after treatment, and autopsy was performed. The pathological diagnosis was glioblastoma (GBM) with unmethylated O-6-methylguanine-DNA methyltransferase promoter and wild isocitrate dehydrogenase 1 gene. We report an extremely short clinical course of adult GBM in medulla oblongata with genetic analysis and present a review of the literature.


Primary glioblastoma Medulla oblongata IDH-1 MGMT Adult 



The authors are grateful to Akiko Imamura for help with immunohistochemistry. This work did not be received any funding.

Supplementary material

10014_2012_118_MOESM1_ESM.pptx (9.7 mb)
Suppl. Fig. 1 Specimen obtained at autopsy. Hematoxylin and eosin staining showing moderate cellularity without mitotic cells and normal vascular structure Suppl. Fig. 2 a Specimen obtained at autopsy. Immunohistochemical analyses showing negative staining for epidermal growth factor receptor (EGFR): insert showing squamous cell carcinoma as positive control. b Immunohistochemical analyses showing negative staining for P53; insert showing adenocarcinoma as positive control


  1. 1.
    Henson JW (2006) Treatment of glioblastoma multiforme: a new standard. Arch Neurol 63:337–341PubMedCrossRefGoogle Scholar
  2. 2.
    Stark AM, Maslehaty H, Hugo HH et al (2010) Glioblastoma of the cerebellum and brainstem. J Clin Neurosci 17:1248–1251PubMedCrossRefGoogle Scholar
  3. 3.
    Queiroz Lde S, da Cruz Neto JN, Lopes de Faria J (1974) Glioblastoma multiforme of the medulla oblangata. Acta Neuropathol 29:355–360PubMedCrossRefGoogle Scholar
  4. 4.
    Yoshimura J, Onda K, Tanaka R et al (2003) Clinicopathological study of diffuse type brainstem gliomas: analysis of 40 autopsy cases. Neurol Med Chir (Tokyo) 43:375–382 (discussion 382)CrossRefGoogle Scholar
  5. 5.
    Luetjens G, Mirzayan MJ, Brandis A et al (2009) Exophytic giant cell glioblastoma of the medulla oblongata. J Neurosurg 110:589–593PubMedCrossRefGoogle Scholar
  6. 6.
    Kyoshima K, Sakai K, Goto T et al (2004) Gross total surgical removal of malignant glioma from the medulla oblongata: report of two adult cases with reference to surgical anatomy. J Clin Neurosci 11:75–80PubMedCrossRefGoogle Scholar
  7. 7.
    Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  8. 8.
    Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003PubMedCrossRefGoogle Scholar
  9. 9.
    Rivera AL, Pelloski CE, Gilbert MR et al (2010) MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. Neuro Oncol 12:116–121PubMedCrossRefGoogle Scholar
  10. 10.
    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773PubMedCrossRefGoogle Scholar
  11. 11.
    Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812PubMedCrossRefGoogle Scholar
  12. 12.
    Hartmann C, Hentschel B, Wick W et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120:707–718PubMedCrossRefGoogle Scholar
  13. 13.
    Yoshida Y, Nakada M, Harada T et al (2010) The expression level of sphingosine-1-phosphate receptor type 1 is related to MIB-1 labeling index and predicts survival of glioblastoma patients. J Neurooncol 98:41–47PubMedCrossRefGoogle Scholar
  14. 14.
    Nobusawa S, Watanabe T, Kleihues P et al (2009) IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 15:6002–6007PubMedCrossRefGoogle Scholar
  15. 15.
    Misaki K, Nakada M, Mohri M et al (2011) MGMT promoter methylation and temozolomide response in choroid plexus carcinoma. Brain Tumor Pathol 28:259–263PubMedCrossRefGoogle Scholar
  16. 16.
    Guillamo JS, Doz F, Delattre JY (2001) Brain stem gliomas. Curr Opin Neurol 14:711–715PubMedCrossRefGoogle Scholar
  17. 17.
    Nishio S, Fukui M, Tateishi J (1988) Brain stem gliomas: a clinicopathological analysis of 23 histologically proven cases. J Neurooncol 6:245–250PubMedCrossRefGoogle Scholar
  18. 18.
    Selvapandian S, Rajshekhar V, Chandy MJ (1999) Brainstem glioma: comparative study of clinico-radiological presentation, pathology and outcome in children and adults. Acta Neurochir (Wien) 141:721–726 (discussion 726–727)Google Scholar
  19. 19.
    Kesari S, Kim RS, Markos V et al (2008) Prognostic factors in adult brainstem gliomas: a multicenter, retrospective analysis of 101 cases. J Neurooncol 88:175–183PubMedCrossRefGoogle Scholar
  20. 20.
    Tokuriki Y, Handa H, Yamashita J et al (1986) Brainstem glioma: an analysis of 85 cases. Acta Neurochir (Wien) 79:67–73CrossRefGoogle Scholar
  21. 21.
    Guillamo JS, Monjour A, Taillandier L et al (2001) Brainstem gliomas in adults: prognostic factors and classification. Brain 124:2528–2539PubMedCrossRefGoogle Scholar
  22. 22.
    Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453PubMedCrossRefGoogle Scholar
  23. 23.
    Kleihues P, Ohgaki H (1999) Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro Oncol 1:44–51PubMedGoogle Scholar
  24. 24.
    Watanabe T, Nobusawa S, Kleihues P et al (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153PubMedCrossRefGoogle Scholar
  25. 25.
    Ichimura K, Pearson DM, Kocialkowski S et al (2009) IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas. Neuro Oncol 11:341–347PubMedCrossRefGoogle Scholar
  26. 26.
    von Deimling A, Korshunov A, Hartmann C (2011) The next generation of glioma biomarkers: MGMT methylation, BRAF fusions and IDH1 mutations. Brain Pathol 21:74–87CrossRefGoogle Scholar

Copyright information

© The Japan Society of Brain Tumor Pathology 2012

Authors and Affiliations

  • Akifumi Yoshikawa
    • 1
  • Mitsutoshi Nakada
    • 1
    Email author
  • Takuya Watanabe
    • 1
  • Yutaka Hayashi
    • 1
  • Hemragul Sabit
    • 2
  • Yukinari Kato
    • 3
  • Shioto Suzuki
    • 4
  • Akishi Ooi
    • 4
  • Hiroshi Sato
    • 2
  • Jun-ichiro Hamada
    • 1
  1. 1.Department of Neurosurgery, Graduate School of Medical ScienceKanazawa UniversityKanazawaJapan
  2. 2.Department of Molecular Virology and Oncology, Cancer Research InstituteKanazawa UniversityKanazawaJapan
  3. 3.Molecular Tumor Marker Research Team, Yamagata University Global COE ProgramYamagata University Faculty of MedicineYamagataJapan
  4. 4.Department of Molecular and Cellular PathologyKanazawa University Graduate School of Medical ScienceKanazawaJapan

Personalised recommendations