Brain Tumor Pathology

, Volume 29, Issue 3, pp 131–139

Molecular pathogenesis of IDH mutations in gliomas

Review Article

Abstract

The isocitrate dehydrogenase 1 (IDH1) or 2 (IDH2) genes are mutated in 50–80% of astrocytomas, oligodendrogliomas or oligoastrocytomas of grades II and III, and secondary glioblastomas; they are, however, seldom mutated in primary glioblastomas and never in other types of glioma. Gliomas with IDH1/2 mutations always harbor either TP53 mutations or total 1p/19q loss. This suggests these two types of tumor may arise from common progenitor cells that have IDH1/2 mutations, subsequently evolving into each tumor type with the acquisition of TP53 mutations or total 1p/19q loss. Survival is significantly longer for patients with IDH-mutated gliomas than for those with IDH-wild type tumors. This observation indicates that IDH status defines biologically different subgroups among gliomas. The molecular pathogenesis of IDH1/2 mutations in the development of gliomas is unclear. The mutated IDH1/2 enzyme generates d-2-hydroxyglutarate. Several theories have been proposed, including: increased angiogenesis because of accumulation of HIF-1α; a glioma CpG island methylator phenotype (G-CIMP) induced by inhibition of TET2; and increased vulnerability to oxidative stress because of depletion of antioxidants. Elucidating the pathogenesis of IDH mutations will aid better understanding of the molecular mechanisms of gliomagenesis and may lead to the development of novel molecular classification and therapy.

Keywords

IDH1 Astrocytoma Oligodendroglioma G-CIMP d-2-Hydroxyglutarate 

Abbreviations

IDH

Isocitrate dehydrogenase

CNS

Central nervous system

WHO

World Health Organization

AML

Acute myeloid leukemia

CGI

CpG island

TMZ

Temozolomide

A

Diffuse astrocytoma grade II

AA

Anaplastic astrocytoma WHO grade III

pGB

Primary glioblastoma WHO grade IV

sGB

Secondary glioblastoma WHO grade IV

O

Oligodendroglioma WHO grade II

AO

Anaplastic oligodendroglioma WHO grade III

OA

Oligoastrocytoma WHO grade II

AOA

Anaplastic oligoastrocytoma WHO grade III

αKG

α-Ketoglutarate

HIF-1α

Hypoxia-inducible factor 1-alpha

VEGF

Vascular endothelial growth factor

PHD

Prolyl hydroxylase

G-CIMP

Glioma CpG island methylator phenotype

5mC

5-Methylcytosine

5hmC

5-Hydroxymethylcytosine

HGA

Hydroxyglutaric aciduria

HGDH

Hydroxyglutarate dehydrogenase

GSH

Glutathione

GSSG

Glutathione disulfide

ROS

Reactive oxygen species

NADP+

Nicotinamide adenine dinucleotide phosphate

NADPH

Nicotinamide adenine dinucleotide phosphate (reduced form)

G6PD

Glucose 6-phosphate dehydrogenase

FFPE

Formalin-fixed paraffin-embedded

References

  1. 1.
    Parsons DW, Jones S, Zhang X et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812PubMedCrossRefGoogle Scholar
  2. 2.
    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773PubMedCrossRefGoogle Scholar
  3. 3.
    Reitman ZJ, Yan H (2010) Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 102:932–941PubMedCrossRefGoogle Scholar
  4. 4.
    Balss J, Meyer J, Mueller W, Korshunov A, Hartmann C, von Deimling A (2008) Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 116:597–602PubMedCrossRefGoogle Scholar
  5. 5.
    Jones DT, Mulholland SA, Pearson DM et al (2011) Adult grade II diffuse astrocytomas are genetically distinct from and more aggressive than their paediatric counterparts. Acta Neuropathol 121:753–761PubMedCrossRefGoogle Scholar
  6. 6.
    Ichimura K, Pearson DM, Kocialkowski S et al (2009) IDH1 mutations are present in the majority of common adult gliomas but are rare in primary glioblastomas. Neuro Oncol 11:341–347PubMedCrossRefGoogle Scholar
  7. 7.
    Korshunov A, Meyer J, Capper D et al (2009) Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropathol 118:401–405PubMedCrossRefGoogle Scholar
  8. 8.
    Green A, Beer P (2010) Somatic mutations of IDH1 and IDH2 in the leukemic transformation of myeloproliferative neoplasms. N Engl J Med 362:369–370PubMedCrossRefGoogle Scholar
  9. 9.
    Kosmider O, Gelsi-Boyer V, Slama L et al (2010) Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia 24:1094–1096PubMedCrossRefGoogle Scholar
  10. 10.
    Mardis ER, Ding L, Dooling DJ et al (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058–1066PubMedCrossRefGoogle Scholar
  11. 11.
    Amary MF, Bacsi K, Maggiani F et al (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224:334–343PubMedCrossRefGoogle Scholar
  12. 12.
    Amary MF, Damato S, Halai D et al (2011) Ollier disease and Maffucci syndrome are caused by somatic mosaic mutations of IDH1 and IDH2. Nat Genet 43:1262–1265PubMedCrossRefGoogle Scholar
  13. 13.
    Pansuriya TC, van Eijk R, d’Adamo P et al (2011) Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet 43:1256–1261PubMedCrossRefGoogle Scholar
  14. 14.
    Bleeker FE, Lamba S, Leenstra S et al (2009) IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat 30:7–11PubMedCrossRefGoogle Scholar
  15. 15.
    Kang MR, Kim MS, Oh JE et al (2009) Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer 125:353–355PubMedCrossRefGoogle Scholar
  16. 16.
    Shibata T, Kokubu A, Miyamoto M, Sasajima Y, Yamazaki N (2011) Mutant IDH1 confers an in vivo growth in a melanoma cell line with BRAF mutation. Am J Pathol 178:1395–1402PubMedCrossRefGoogle Scholar
  17. 17.
    Yen KE, Bittinger MA, Su SM, Fantin VR (2010) Cancer-associated IDH mutations: biomarker and therapeutic opportunities. Oncogene 29:6409–6417PubMedCrossRefGoogle Scholar
  18. 18.
    Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474PubMedCrossRefGoogle Scholar
  19. 19.
    Pusch S, Sahm F, Meyer J, Mittelbronn M, Hartmann C, von Deimling A (2011) Glioma IDH1 mutation patterns off the beaten track. Neuropathol Appl Neurobiol 37:428–430PubMedCrossRefGoogle Scholar
  20. 20.
    Hartmann C, Hentschel B, Wick W et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120:707–718PubMedCrossRefGoogle Scholar
  21. 21.
    Jenkins RB, Blair H, Ballman KV et al (2006) A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma. Cancer Res 66:9852–9861PubMedCrossRefGoogle Scholar
  22. 22.
    Ohgaki H, Kleihues P (2011) Genetic profile of astrocytic and oligodendroglial gliomas. Brain Tumor Pathol 28:177–183PubMedCrossRefGoogle Scholar
  23. 23.
    Watanabe T, Nobusawa S, Kleihues P, Ohgaki H (2009) IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol 174:1149–1153PubMedCrossRefGoogle Scholar
  24. 24.
    Zhao S, Lin Y, Xu W et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324:261–265PubMedCrossRefGoogle Scholar
  25. 25.
    Jin G, Reitman ZJ, Spasojevic I et al (2011) 2-hydroxyglutarate production, but not dominant negative function, is conferred by glioma-derived NADP-dependent isocitrate dehydrogenase mutations. PLoS ONE 6:e16812PubMedCrossRefGoogle Scholar
  26. 26.
    Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 465:966CrossRefGoogle Scholar
  27. 27.
    Xu W, Yang H, Liu Y et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30PubMedCrossRefGoogle Scholar
  28. 28.
    Williams SC, Karajannis MA, Chiriboga L, Golfinos JG, von Deimling A, Zagzag D (2011) R132H-mutation of isocitrate dehydrogenase-1 is not sufficient for HIF-1alpha upregulation in adult glioma. Acta Neuropathol 121:279–281PubMedCrossRefGoogle Scholar
  29. 29.
    Noushmehr H, Weisenberger DJ, Diefes K et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522PubMedCrossRefGoogle Scholar
  30. 30.
    Figueroa ME, Abdel-Wahab O, Lu C et al (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567PubMedCrossRefGoogle Scholar
  31. 31.
    Turcan S, Rohle D, Goenka A et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature [Epub ahead of print]Google Scholar
  32. 32.
    Lu C, Ward PS, Kapoor GS et al (2012) IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature [Epub ahead of print]Google Scholar
  33. 33.
    Aghili M, Zahedi F, Rafiee E (2009) Hydroxyglutaric aciduria and malignant brain tumor: a case report and literature review. J Neurooncol 91:233–236PubMedCrossRefGoogle Scholar
  34. 34.
    Krell D, Assoku M, Galloway M, Mulholland P, Tomlinson I, Bardella C (2011) Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. PLoS ONE 6:e19868PubMedCrossRefGoogle Scholar
  35. 35.
    Brehmer S, Pusch S, Schmieder K, von Deimling A, Hartmann C (2011) Mutational analysis of D2HGDH and L2HGDH in brain tumours without IDH1 or IDH2 mutations. Neuropathol Appl Neurobiol 37:330–332PubMedCrossRefGoogle Scholar
  36. 36.
    Jin SG, Jiang Y, Qiu R et al (2011) 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations. Cancer Res 71:7360–7365PubMedCrossRefGoogle Scholar
  37. 37.
    Kim YH, Pierscianek D, Mittelbronn M et al (2011) TET2 promoter methylation in low-grade diffuse gliomas lacking IDH1/2 mutations. J Clin Pathol 64:850–852PubMedCrossRefGoogle Scholar
  38. 38.
    Dringen R, Bishop GM, Koeppe M, Dang TN, Robinson SR (2007) The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res 32:1884–1890PubMedCrossRefGoogle Scholar
  39. 39.
    Pratico D (2008) Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci 29:609–615PubMedCrossRefGoogle Scholar
  40. 40.
    Maynard S, Schurman SH, Harboe C, de Souza-Pinto NC, Bohr VA (2009) Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis 30:2–10PubMedCrossRefGoogle Scholar
  41. 41.
    Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155PubMedCrossRefGoogle Scholar
  42. 42.
    Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW (2002) Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 32:1185–1196PubMedCrossRefGoogle Scholar
  43. 43.
    Mailloux RJ, Beriault R, Lemire J et al (2007) The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS ONE 2:e690PubMedCrossRefGoogle Scholar
  44. 44.
    Kim SY, Park JW (2003) Cellular defense against singlet oxygen-induced oxidative damage by cytosolic NADP+-dependent isocitrate dehydrogenase. Free Radic Res 37:309–316PubMedCrossRefGoogle Scholar
  45. 45.
    Lieber MR (2008) The mechanism of human nonhomologous DNA end joining. J Biol Chem 283:1–5PubMedCrossRefGoogle Scholar
  46. 46.
    Koptyra M, Cramer K, Slupianek A, Richardson C, Skorski T (2008) BCR/ABL promotes accumulation of chromosomal aberrations induced by oxidative and genotoxic stress. Leukemia 22:1969–1972PubMedCrossRefGoogle Scholar
  47. 47.
    Luchman HA, Stechishin OD, Dang NH et al (2012) An in vivo patient-derived model of endogenous IDH1-mutant glioma. Neuro Oncol 14:184–191PubMedCrossRefGoogle Scholar
  48. 48.
    van den Bent MJ, Dubbink HJ, Marie Y et al (2010) IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clin Cancer Res 16:1597–1604PubMedCrossRefGoogle Scholar
  49. 49.
    Hartmann C, Hentschel B, Tatagiba M et al (2011) Molecular markers in low-grade gliomas: predictive or prognostic? Clin Cancer Res 17:4588–4599PubMedCrossRefGoogle Scholar
  50. 50.
    Mukasa A, Takayanagi S, Saito K et al (2011) Significance of IDH mutations varies with tumor histology, grade, and genetics in Japanese glioma patients. Cancer SciGoogle Scholar
  51. 51.
    Sanson M, Marie Y, Paris S et al (2009) Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 27:4150–4154PubMedCrossRefGoogle Scholar
  52. 52.
    Tabatabai G, Stupp R, van den Bent MJ et al (2010) Molecular diagnostics of gliomas: the clinical perspective. Acta Neuropathol 120:585–592PubMedCrossRefGoogle Scholar
  53. 53.
    Lai A, Kharbanda S, Pope WB et al (2011) Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. J Clin Oncol 29:4482–4490PubMedCrossRefGoogle Scholar
  54. 54.
    Nobusawa S, Watanabe T, Kleihues P, Ohgaki H (2009) IDH1 mutations as molecular signature and predictive factor of secondary glioblastomas. Clin Cancer Res 15:6002–6007PubMedCrossRefGoogle Scholar
  55. 55.
    Horbinski C, Kofler J, Kelly LM, Murdoch GH, Nikiforova MN (2009) Diagnostic use of IDH1/2 mutation analysis in routine clinical testing of formalin-fixed, paraffin-embedded glioma tissues. J Neuropathol Exp Neurol 68:1319–1325PubMedCrossRefGoogle Scholar
  56. 56.
    Capper D, Reuss D, Schittenhelm J et al (2011) Mutation-specific IDH1 antibody differentiates oligodendrogliomas and oligoastrocytomas from other brain tumors with oligodendroglioma-like morphology. Acta Neuropathol 121:241–252PubMedCrossRefGoogle Scholar
  57. 57.
    Riemenschneider MJ, Jeuken JW, Wesseling P, Reifenberger G (2010) Molecular diagnostics of gliomas: state of the art. Acta Neuropathol 120:567–584PubMedCrossRefGoogle Scholar
  58. 58.
    Andronesi OC, Kim GS, Gerstner E et al (2012) Detection of 2-hydroxyglutarate in IDH-mutated glioma patients by in vivo spectral-editing and 2D correlation magnetic resonance spectroscopy. Sci Transl Med 4:116ra4PubMedCrossRefGoogle Scholar
  59. 59.
    Choi C, Ganji SK, Deberardinis RJ et al (2012) 2-hydroxyglutarate detection by magnetic resonance spectroscopy in IDH-mutated patients with gliomas. Nat MedGoogle Scholar
  60. 60.
    Felsberg J, Wolter M, Seul H et al (2010) Rapid and sensitive assessment of the IDH1 and IDH2 mutation status in cerebral gliomas based on DNA pyrosequencing. Acta Neuropathol 119:501–507PubMedCrossRefGoogle Scholar
  61. 61.
    Takano S, Tian W, Matsuda M et al (2011) Detection of IDH1 mutation in human gliomas: comparison of immunohistochemistry and sequencing. Brain Tumor Pathol 28:115–123PubMedCrossRefGoogle Scholar
  62. 62.
    Kaneko MK, Tian W, Takano S et al (2011) Establishment of a novel monoclonal antibody SMab-1 specific for IDH1-R132S mutation. Biochem Biophys Res Commun 406:608–613PubMedCrossRefGoogle Scholar
  63. 63.
    Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453PubMedCrossRefGoogle Scholar
  64. 64.
    Jones DT, Kocialkowski S, Liu L et al (2008) Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 68:8673–8677PubMedCrossRefGoogle Scholar

Copyright information

© The Japan Society of Brain Tumor Pathology 2012

Authors and Affiliations

  1. 1.Division of Brain Tumor Translational ResearchNational Cancer Center Research InstituteTokyoJapan

Personalised recommendations