Advertisement

Hilbert Coefficients and the Depth of Associated Graded Rings with Respect to Parameter Ideals

  • Cao Huy LinhEmail author
  • Van Duc Trung
Article
  • 14 Downloads

Abstract

In this paper, we investigate the non-positivity for the Hilbert coefficients of parameter ideals. Moreover, we establish a relationship between the vanishing of Hilbert coefficients and the depth of associated graded rings with respect to parameter ideals in the case of small regularity.

Keywords

Hilbert coefficients The depth of associated graded rings Parameter ideals Castelnuovo–Mumford regularity Postulation number 

Mathematics Subject Classification (2010)

Primary 13D45 13D07 Secondary 14B15 

Notes

Acknowledgements

This paper was written while the first author was visiting Vietnam Institute for Advanced Study in Mathematics. He would like to thank the VIASM for hospitality and financial support.

The authors are grateful to the referees for valuable comments and suggestions which help to create the final version.

Funding Information

Cao Huy Linh and Van Duc Trung are supported by the NAFOSTED of Vietnam under grant number 101.04-2015.32.

References

  1. 1.
    Brodmann, M., Sharp, R.Y.: Local Cohomology: an Algebraic Introduction with Geometric Applications. Cambridge University Press, Cambridge (1998)CrossRefGoogle Scholar
  2. 2.
    Brodmann, M., Linh, C.H.: Castelnuovo–mumford regularity, postulation numbers and relation types. J. Algebra 419, 124–140 (2014)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cuong, N.T., Goto, S., Truong, H.L.: Hilbert coefficients and sequentially Cohen–Macaulay modules. J. Pure Appl. Algebra 217, 470–480 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ghezzi, L., Goto, S., Hong, J., Ozeki, K., Phuong, T.T., Vasconcelos, W.V.: Cohen–macaulayness versus the vanishing of the first Hilbert coefficient of parameter ideals. J. Lond. Math. Soc. 81, 679–695 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hoa, L.T.: Reduction numbers of equimultiple ideals. J. Pure Appl. Algebra 109, 111–126 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Huckaba, S., Marley, T.: Hilbert coefficients and the depths of associated graded rings. J. Lond. Math. Soc. 56, 64–76 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Mandal, M., Singh, B., Verma, J.K.: On some conjectures about the Chern numbers of filtration. J. Algebra 325, 147–162 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Marley, T.: The reduction number of an ideal and the local cohomology of the associated graded rings. Proc. Am. Math. Soc. 117, 335–341 (1993)MathSciNetCrossRefGoogle Scholar
  9. 9.
    McCune, L.: Hilbert coefficients of parameter ideals. J. Commut. Algebra 5, 399–412 (2013)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nagata, M.: Local Rings. Wiley, New York (1962)zbMATHGoogle Scholar
  11. 11.
    Saikia, A., Saloni, K.: Bounding Hilbert coefficients of parameter ideals. J. Algebra 501, 328–344 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Trung, N.V.: Absolutely superficial sequences. Math. Proc. Camb. Philos. Soc. 93, 35–47 (1983)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Trung, N.V.: The Castelnuovo regularity of the Rees algebra and the associated graded ring. Trans. Am. Math. Soc. 350, 2813–2832 (1998)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Vasconcelos, W.V.: The Chern coefficients of local rings. Mich. Math. J. 57, 725–743 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mathematics, College of EducationHue UniversityHueVietnam

Personalised recommendations