Advertisement

Vietnam Journal of Mathematics

, Volume 46, Issue 4, pp 967–985 | Cite as

Shape Optimization for Interface Identification with Obstacle Problems

  • Björn Führ
  • Volker SchulzEmail author
  • Kathrin Welker
Article
  • 133 Downloads

Abstract

Shape optimization is an industrially highly relevant subject. Recently, it gained much interest due to novel developments in the usage of volumetric formulations of shape derivatives. This paper is based on recent results in the field of PDE constrained shape optimization and carries the achieved methodology over to shape optimization problems with constraints in the form of variational inequalities, in particular, in the form of obstacle problems. A novel expression for the volumetric shape derivative in this context is proven and numerical results of a descent strategy based on this expression are reported.

Keywords

Shape optimization Variational inequalities Obstacle problem 

Mathematics Subject Classification (2010)

65K15 49Q10 57N25 

Notes

Acknowledgements

This work has been supported by the German Research Foundation within the priority program SPP 1962 Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization under contract number Schu804/15-1 and the research training group 2126 Algorithmic Optimization.

References

  1. 1.
    Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)CrossRefGoogle Scholar
  2. 2.
    Allaire, G.: Conception Optimale de Structures. Mathématiques & Applications, vol. 58. Springer, Berlin (2007)Google Scholar
  3. 3.
    Ameur, H.B., Burger, M., Hackl, B.: Level set methods for geometric inverse problems in linear elasticity. Inverse Probl. 20, 673–696 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Berggren, M.: A unified discrete–continuous sensitivity analysis method for shape optimization. In: Fitzgibbon, W. et al. (eds.) Applied and Numerical Partial Differential Equations. Computational Methods in Applied Sciences, vol. 15, pp. 25–39. Springer, Dordrecht (2010)Google Scholar
  5. 5.
    Bock, H.G.: Numerical treatment of inverse problems in chemical reaction kinetics. In: Ebert, K.H., Deuflhard, P., Jäger, W (eds.) Modelling of Chemical Reaction Systems. Springer Series in Chemical Physics, vol. 18, pp. 102–125. Springer, Berlin (1981)Google Scholar
  6. 6.
    Céa, J.: Conception optimale ou identification de formes calcul rapide de la dérivée directionelle de la fonction coût. RAIRO Model Math. Anal. Numér. 20, 371–402 (1986)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Correa, R., Seeger, A.: Directional derivative of a minimax function. Nonlinear Anal. 9, 13–22 (1985)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Delfour, M.C., Zolésio, J.P.: Shapes and Geometries: Analysis, Differential Calculus, and Optimization. SIAM, Philadelphia (2001)zbMATHGoogle Scholar
  9. 9.
    Denkowski, Z., Migorski, S.: Optimal shape design for hemivariational inequalities. Univ. Iagell. Acta Mat. 36, 81–88 (1998)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Eppler, K., Harbrecht, H., Schneider, R.: On convergence in elliptic shape optimization. SIAM J. Control Optim. 46, 61–83 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gangl, P., Laurain, A., Meftahi, H., Sturm, K.: Shape optimization of an electric motor subject to nonlinear magnetostatics. arXiv:1501.04752 (2015)
  12. 12.
    Gasiński, L.: Mapping method in optimal shape design problems governed by hemivariational inequalities. In: Cagnol, J., Polis, M. P., Zolésio, J. (eds.) Shape Optimization and Optimal Design. Lecture Notes in Pure and Applied Mathematics, vol. 216, pp. 277–288. Marcel Dekker, New York (2001)Google Scholar
  13. 13.
    Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization: Theory, Approximation, and Computation. Advances in Design and Control. SIAM, Philadelphia (2003)CrossRefGoogle Scholar
  14. 14.
    Hintermüller, M.: Fast level set based algorithms using shape and topological sensitivity information. Control Cybern. 34, 305–324 (2005)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hintermüller, M., Laurain, A.: Optimal shape design subject to elliptic variational inequalities. SIAM J. Control Optim. 49, 1015–1047 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hintermüller, M., Ring, W.: A second order shape optimization approach for image segmentation. SIAM J. Appl. Math. 64, 442–467 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ito, K., Kunisch, K.: Semi-smooth Newton methods for variational inequalities of the first kind. ESAIM: Math. Model. Numer. Anal. 37, 41–62 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. Advances in Design and Control, vol. 15. SIAM, Philadelphia (2008)zbMATHGoogle Scholar
  19. 19.
    Ito, K., Kunisch, K., Peichl, G.H.: Variational approach to shape derivatives. ESAIM: Control Optim. Calc. Var. 14, 517–539 (2008)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Classics in Applied Mathematics, vol. 31. SIAM, Philadelphia (2000)CrossRefGoogle Scholar
  21. 21.
    Kočvara, M., Outrata, J.V.: Shape optimization of elasto-plastic bodies governed by variational inequalities. In: Zolésio, J. (ed.) Boundary Control and Variation. Lecture Notes in Pure and Applied Mathematics, vol. 163, pp. 261–271. Marcel Dekker, New York (1994)Google Scholar
  22. 22.
    Liu, W.B., Rubio, J.E.: Optimal shape design for systems governed by variational inequalities, part 1: Existence theory for the elliptic case. J. Optim. Theory Appl. 69, 351–371 (1991)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Liu, W.B., Rubio, J.E.: Optimal shape design for systems governed by variational inequalities, part 2: Existence theory for the evolutionary case. J. Optim. Theory Appl. 69, 373–396 (1991)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Michor, P.W., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23, 74–113 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Mohammadi, B., Pironneau, O.: Applied Shape Optimization for Fluids. Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (2001)zbMATHGoogle Scholar
  26. 26.
    Myślinśki, A.M.: Domain optimization for unilateral problems by an embedding domain method. In: Cagnol, J., Polis, M.P., Zolésio, J. (eds.) Shape Optimization and Optimal Design. Lecture Notes in Pure and Applied Mathematics, vol. 216, pp. 355–370. Marcel Dekker, New York (2001)Google Scholar
  27. 27.
    Myślinśki, A.M.: Level set approach for shape optimization of contact problems. In: Neittaanmäki, P., Rossi, T., Majava, K., Pironneau, O., Lasiecka, I. (eds.) European Congress on Computational Methods. Applied Sciences and Engineering ECCOMAS 2004 (2004)Google Scholar
  28. 28.
    Myśliński, A.: Level set method for shape and topology optimization of contact problems. In: Korytowski, A., et al. (eds.) System Modelling and Optimization. IFIP Advances in Information and Communication Technology, vol. 312, pp. 397–410. Springer, Berlin (2007)zbMATHGoogle Scholar
  29. 29.
    Nägel, A., Schulz, V., Siebenborn, M., Wittum, G.: Scalable shape optimization methods for structured inverse modeling in 3D diffusive processes. Comput. Visual. Sci. 17, 79–88 (2015)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Novotny, A.A., Sokołowski, J.: Topological Derivatives in Shape Optimization. Springer, Berlin (2013)CrossRefGoogle Scholar
  31. 31.
    Paganini, A.: Approximative shape gradients for interface problems. Tech Rep. 2014-12. ETH Zürich, Seminar for Applied Mathematics (2014)Google Scholar
  32. 32.
    Ring, W., Wirth, B.: Optimization methods on Riemannian manifolds and their application to shape space. SIAM J. Optim. 22, 596–627 (2012)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Schmidt, S.: Weak and strong form shape Hessians and their automatic generation. SIAM J. Sci. Comput. 40, C210–C233 (2018)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Schmidt, S., Ilic, C., Schulz, V., Gauger, N.: Three-dimensional large-scale aerodynamic shape optimization based on the shape calculus. AIAA J. 51, 2615–2627 (2013)CrossRefGoogle Scholar
  35. 35.
    Schulz, V.: A Riemannian view on shape optimization. Found. Comput. Math. 14, 483–501 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Schulz, V., Siebenborn, M.: Computational comparison of surface metrics for PDE constrained shape optimization. Comput. Methods Appl. Math. 16, 485–496 (2016)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Schulz, V., Siebenborn, M., Welker, K.: Structured inverse modeling in parabolic diffusion problems. SIAM J. Control Optim. 53, 3319–3338 (2015)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Schulz, V., Siebenborn, M., Welker, K.: Towards a Lagrange–Newton approach for PDE constrained shape optimization. In: Pratelli, A., Leugering, G (eds.) New Trends in Shape Optimization. International Series of Numerical Mathematics, vol. 166, pp. 229–249. Springer, Switzerland (2015)CrossRefGoogle Scholar
  39. 39.
    Schulz, V., Siebenborn, M., Welker, K.: A novel Steklov-Poincarétype metric for efficient PDE constrained optimization in shape spaces. SIAM J. Optim. 26, 2800–2819 (2016)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Siebenborn, M., Welker, K.: Algorithmic aspects of multigrid methods for optimization in shape spaces. SIAM J. Sci. Comput. 39, B1156–B1177 (2017)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Sokolowski, J., Zolesio, J.-P.: Introduction to Shape Optimization. Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992)CrossRefGoogle Scholar
  42. 42.
    Toffel, R.: Structural Optimization of Coupled Problems. Ph.D. thesis, Universität Trier (2013). http://ubt.opus.hbz-nrw.de/volltexte/2014/838/ Google Scholar
  43. 43.
    Udawalpola, R., Berggren, M.: Optimization of an acoustic horn with respect to efficiency and directivity. Int. J. Numer. Methods Eng. 73, 1571–1606 (2007)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Welker, K.: Efficient PDE Constrained Shape Optimization in Shape Spaces. Ph.D. thesis, Universität Trier (2016). http://ubt.opus.hbz-nrw.de/volltexte/2017/1024/ Google Scholar
  45. 45.
    Welker, K.: Suitable spaces for shape optimization. arXiv:1702.07579 (2017)

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of MathematicsTrier UniversityTrierGermany

Personalised recommendations