Advertisement

Vietnam Journal of Mathematics

, Volume 46, Issue 2, pp 259–269 | Cite as

Restricted Limiting Subdifferential and Applications

  • Tijani Amahroq
  • Abderrahim JouraniEmail author
Article
  • 124 Downloads

Abstract

The aim of this note is to introduce a subdifferential in the spirit of the limiting Fréchet subdifferential. Chain rules are established and several properties are given. We use this subdifferential to compute the subdifferential of subanalytic functions and the value function. An application to discrete infinite horizon dynamic programming is provided.

Keywords

Restricted subdifferential Fréchet subdifferential Subanalytic function Lojasiewicz inequality Value function Dynamic programming 

Mathematics Subject Classification (2010)

49J52 49J53 90C31 49J40 

Notes

Acknowledgements

The authors wish to thank the anonymous referees for very careful reading of the paper and many valuable comments and suggestions, which helped us to improve the presentation.

References

  1. 1.
    Benveniste, L.M., Scheinkman, J.A.: On the differentiability of the value function in dynamic models of economics. Econometrica 47, 727–732 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bierstone, E., Milman, P.D.: Semianalytic and subanalytic sets. Publ. Math. l’IHES 67, 5–42 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17, 1205–1223 (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-interscience, New York (1983)zbMATHGoogle Scholar
  5. 5.
    Fabian, M., Henrion, R., Kruger, A.Y., Outrata, J.: Error bound: necessary and sufficient conditions. Set-valued Var. Anal. 18, 121–149 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ioffe, A.D.: Approximate subdifferentials and applications I: the finite-dimensional theory. Trans. Am. Math. Soc. 281, 389–416 (1984)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Mordukhovich, B.: Variational Analysis and Generalized Differentiation, I: Basic Theory; II: Applications. Grundlehren Series (Fundamental Principles of Mathematical Sciences), Vols 330 and 331. Springer, Berlin (2006)Google Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Département de Mathématiques, Faculté des Sciences et TechniquesUniversité Cadi AyyadMarrakechMorocco
  2. 2.Institut de Mathématiques de Bourgogne, UMR 5584 CNRSUniversité de Bourgogne Franche-ComtéDijon CedexFrance

Personalised recommendations