Formal Series on Cylinders and Their Radon Transform

  • Ricardo EstradaEmail author


We define and study spaces of formal Fourier–Laplace series both in \(\mathbb {R}^{n}\) and in the cylinder \(\mathbb {S}^{n-1}\times \mathbb {R}\). We show how such spaces of formal series appear in the study of the Radon transform.


Formal series Fourier–Laplace expansions Radon transforms 

Mathematics Subject Classification (2010)

44A12 46F10 



  1. 1.
    Axler, S., Bourdon, P., Ramey, W.: Harmonic Function Theory. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Estrada, R.: The nonexistence of regularization operators. J. Math. Anal. Appl. 286, 1–10 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Estrada, R.: On radial functions and distributions and their Fourier transforms. J. Fourier Anal. Appl. 20, 301–320 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Estrada, R.: The Radon transform of certain oscillatory distributions. Kragujev. J. Math. 39, 197–205 (2015)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Estrada, R.: The Funk–Hecke formula, harmonic polynomials, and derivatives of radial distributions. Rev. Parana. Mat. 37, 141–155 (2018)Google Scholar
  6. 6.
    Estrada, R., Kanwal, R.P.: A Distributional Approach to Asymptotics: Theory and Applications, 2nd edn. Birkhäuser, Boston (2002)Google Scholar
  7. 7.
    Estrada, R., Rubin, B.: Null spaces of Radon transforms. Adv. Math. 290, 1159–1182 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Folland, G.B.: Introduction to Partial Differential Equations. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  9. 9.
    Funk, P.: Beiträge zur theorie der kugelfunktionen. Math. Ann. 77, 136–152 (1915)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gel’fand, I.M., Graev, M.I., Vilenkin, N.Y.: Generalized Functions. Integral Geometry and Representation Theory, vol. 5. Academic Press, New York (1966)zbMATHGoogle Scholar
  11. 11.
    Grafakos, L., Teschl, G.: On Fourier transforms of radial functions and distributions. J. Fourier Anal. Appl. 19, 167–179 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hecke, E.: ÜBer orthogonal-invariante integralgleichungen. Math. Ann. 78, 398–404 (1918)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Helgason, S.: Geometric Analysis on Symmetric Spaces. American Mathematical Society, Providence (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Horváth, J.: Topological Vector Spaces and Distributions, vol. I. Addison-Wesley, Reading (1966)zbMATHGoogle Scholar
  15. 15.
    Ludwig, D.: The Radon transform on euclidean space. Commun. Pure Appl. Math. 19, 49–81 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Quinto, E.T.: Null spaces and ranges for the classical and spherical Radon transforms. J. Math. Anal. Appl. 90, 408–420 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Ramm, A.G.: The Radon transform on distributions. Proc. Jpn. Acad. 71, 202–206 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ramm, A.G., Katsevich, A.I.: The Radon Transform and Local Tomography. CRC Press, Boca Raton (1996)zbMATHGoogle Scholar
  19. 19.
    Rubin, B.: Introduction to Radon Transforms (with Elements of Fractional Calculus and Harmonic Analysis). Cambridge University Press, Cambridge (2015)zbMATHGoogle Scholar
  20. 20.
    Trèves, F.: Topological Vector Spaces, Distributions, and Kernels. Academic Press, New York (1967)zbMATHGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MathematicsLouisiana State UniversityBaton RougeUSA

Personalised recommendations