Vietnam Journal of Mathematics

, Volume 45, Issue 1–2, pp 127–152 | Cite as

A Hydrodynamic Limit for Chemotaxis in a Given Heterogeneous Environment

  • Stefan Grosskinsky
  • Daniel Marahrens
  • Angela StevensEmail author


In this paper, the first equation within a class of well-known chemotaxis systems is derived as a hydrodynamic limit from a stochastic interacting many particle system on the lattice. The cells are assumed to interact with attractive chemical molecules on a finite number of lattice sites, but they only directly interact among themselves on the same lattice site. The chemical environment is assumed to be stationary with a slowly varying mean, which results in a non-trivial macroscopic chemotaxis equation for the cells. Methodologically, the limiting procedure and its proofs are based on results by Koukkous (Stoch. Process. Appl. 84, 297–312, cite.Kou99) and Kipnis and Landim (Scaling limits of interacting particle systems, cite.KL99). Numerical simulations extend and illustrate the theoretical findings.


Chemotaxis Interacting stochastic many particle system Hydrodynamic limit Stochastic lattice gas Block estimates 

Mathematics Subject Classification (2010)

60K35 60F25 35K55 35Q82 82C22 92B05 



Major parts of this work were done while D. Marahrens and A. Stevens were working at the University of Heidelberg. This work was finished while A. Stevens took part in the CGP-program, 2015 at the Isaac Newton Institute, Cambridge.


  1. 1.
    Alt, W.: Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9, 147–177 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Avena, L., Franco, T., Jara, M., Völlering, F.: Symmetric exclusion as a random environment: hydrodynamic limits. Ann. Inst. H. Poincaré Probab. Statist. 51, 901–916 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bahadoran, C., Guiol, H., Ravishankar, K., Saada, E.: Euler hydrodynamics of one-dimensional attractive particle systems. Ann. Probab. 34, 339–1369 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bahadoran, C., Guiol, H., Ravishankar, K., Saada, E.: Euler hydrodynamics for attractive particle systems in random environment. Ann. Inst. H. Poincaré Probab. Statist. 50, 403–424 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Billingsley, P.: Convergence of Probability Measures. 2nd ed. Wiley, New York (1999)Google Scholar
  6. 6.
    Braxmeier-Even, N., Olla, S.: Hydrodynamic limit for an Hamiltonian system with boundary conditions and conservative noise. Arch. Ration. Mech. Anal. 213, 561–585 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Childress, S., Percus, J.K.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Covert, P., Rezakhanlou, F.: Hydrodynamic limit for particle systems with nonconstant speed parameter. J. Statist. Phys. 88, 383–426 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    De Masi, A., Luckhaus, S., Presutti, E.: Two scales hydrodynamic limit for a model of Malignant tumor cells. Ann. Inst. H. Poincare Probab. Statist. 43, 257–297 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    Fritz, J., Tóth, B.: Derivation of the Leroux system as the hydrodynamic limit of a two-component lattice gas. Commun. Math. Phys. 249, 1–27 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gonçalves, P., Jara, M.: Scaling limits for gradient systems in random environment. J. Stat. Phys. 131, 691–716 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Grosskinsky, S., Spohn, H.: Stationary measures and hydrodynamics of zero range processes with several species of particles. Bull. Braz. Math. Soc. (N.S.) 34, 489–507 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Guo, M.Z., Papanicolaou, G.C., Varadhan, S.R.S.: Nonlinear diffusion limit for a system with nearest neighbor interactions. Commun. Math. Phys. 118, 31–59 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jäger, W., Luckhaus, S.: On explosion of solutions to a system of partial differential equations modelling chemotaxis. Trans. Am. Math. Soc. 329, 819–824 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jara, M.: Hydrodynamic limit of the exclusion process in inhomogeneous media. In: Dynamics, Games and Science (II), Springer Proc. Math. 2, pp 449–465. Springer, Heidelberg (2011)Google Scholar
  16. 16.
    Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26, 399–415 (1970)CrossRefzbMATHGoogle Scholar
  17. 17.
    Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer (1999)Google Scholar
  18. 18.
    Koukkous, A.: Hydrodynamic behavior of symmetric zero-range processes with random rates. Stoch. Process. Appl. 84, 297–312 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Koukkous, A., Guiol, H.: Large deviations for a zero mean asymmetric zero range process in random media (2010). arXiv:math/0009110
  20. 20.
    Krug, J., Ferrari, P.A.: Phase transitions in driven diffusive systems with random rates. J. Phys. A 29, L465–L471 (1996)Google Scholar
  21. 21.
    Landim, C.: Hydrodynamical limit for space inhomogeneous one-dimensional totally asymmetric zero-range processes. Ann. Probab. 24, 599–638 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Luckhaus, S., Triolo, L.: The continuum reaction-diffusion limit of a stochastic cellular growth model. Atti Accad. Naz. Lincei CI. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 15, 215–223 (2004)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Marahrens, D.: A Hydrodynamic Limit for a Zero Range Process in a Random Medium with Slowly Varying Average. Diplomathesis, University of Heidelberg (2008)Google Scholar
  24. 24.
    Oelschläger, K.: A law of large numbers for moderately interacting diffusion processes. Z. Wahrsch. Verw. Gebiete 69, 279–322 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Oelschläger, K.: On the derivation of reaction-diffusion equations as limit dynamics of systems of moderately interacting stochastic processes. Probab. Theory Rel. Fields 82, 565–586 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Othmer, H.G., Stevens, A.: Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random walks. SIAM J. Appl. Math. 57, 1044–1081 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Papanicolaou, G.C., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients. In: Random Fields, Vols. I–II (Esztergom, 1979). Colloq. Math. Soc. JÁnos Bolyai, vol. 27, pp 835–873 (1981)Google Scholar
  28. 28.
    Rafferty, T., Chleboun, P., Grosskinsky, S.: Monotonicity and condensation in homogeneous stochastic particle systems (2015). arXiv:1505.02049
  29. 29.
    Rezakhanlou, F.: Hydrodynamic limit for attractive particle systems on Z d. Commun. Math. Phys. 140, 417–448 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Schaaf, R.: Stationary solutions of chemotaxis systems. Trans. Am. Math. Soc. 292, 531–556 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Stevens, A.: Trail following and aggregation of myxobacteria. J. Biol. Syst. 3, 1059–1068 (1995)CrossRefGoogle Scholar
  33. 33.
    Stevens, A.: A stochastic cellular automaton modeling gliding and aggregation of myxobacteria. SIAM J. Appl. Math. 61, 172–182 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Stevens, A.: The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems. SIAM J. Appl. Math. 61, 183–212 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Toth, B., Valko, B.: Perturbation of singular equilibria of hyperbolic two-component systems: a universal hydrodynamic limit. Commun. Math. Phys. 256, 111–157 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Stefan Grosskinsky
    • 1
  • Daniel Marahrens
    • 2
  • Angela Stevens
    • 3
    Email author
  1. 1.University of Warwick, Mathematics InstituteCoventryUK
  2. 2.Max-Planck-Institute for Mathematics in the Sciences (MPI MIS)LeipzigGermany
  3. 3.Westfälische Wilhelms-Universität MünsterApplied MathematicsMünsterGermany

Personalised recommendations