Vietnam Journal of Mathematics

, Volume 43, Issue 2, pp 323–341 | Cite as

A Splitting Algorithm for System of Composite Monotone Inclusions

  • Dinh Dũng
  • Bằng Công Vũ


We propose a splitting algorithm for solving a system of composite monotone inclusions formulated in the form of the extended set of solutions in real Hilbert spaces. The resulting algorithm is an extension of the algorithm in Becker and Combettes (J. Convex Nonlinear Anal. 15, 137–159, 2014). The weak convergence of the algorithm proposed is proved. Applications to minimization problems is demonstrated.


Coupled system Monotone inclusion Monotone operator Splitting method Lipschitzian operator Forward-backward-forward algorithm Composite operator Duality Primal-dual algorithm 

Mathematics Subject Classification (2010)

47H05 49M29 49M27 90C25 



This work is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant No. 102.01-2014.02. A part of the research work of Dinh Dũng was done when the author was working as a research professor at the Vietnam Institute for Advanced Study in Mathematics (VIASM). He would like to thank the VIASM for providing a fruitful research environment and working condition. We thank the referees for their suggestions and corrections which helped to improve the first version of the manuscript.


  1. 1.
    Attouch, H., Briceño-Arias, L.M., Combettes, P.L.: A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim. 48, 3246–3270 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Attouch, H., Théra, M.: A general duality principle for the sum of two operators. J. Convex Anal. 3, 1–24 (1996)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Becker, S., Combettes, P.L.: An algorithm for splitting parallel sums of linearly composed monotone operators, with applications to signal recovery. J. Nonlinear Convex Anal. 15, 137–159 (2014)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Boţ, R.I., Csetnek, E.R., Nagy, E.: Solving systems of monotone inclusions via primal-dual splitting techniques. Taiwan. J. Math. 17, 1983–2009 (2013)zbMATHGoogle Scholar
  6. 6.
    Boţ, R.I., Hendrich, C.: A Douglas–Rachford type primal-dual method for solving inclusions with mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23, 2541–2565 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Boţ, R.I., Hendrich, C.: Solving monotone inclusions involving parallel sums of linearly composed maximally monotone operators. arXiv:1306.3191(2013)
  8. 8.
    Briceño-Arias, L.M., Combettes, P.L.: Convex variational formulation with smooth coupling for multicomponent signal decomposition and recovery. Numer. Math. Theory Methods Appl. 2, 485–508 (2009)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Briceño-Arias, L.M., Combettes, P.L., Pesquet, J.-C., Pustelnik, N.: Proximal algorithms for multicomponent image recovery problems. J. Math. Imaging Vis. 41, 3–22 (2011)CrossRefzbMATHGoogle Scholar
  10. 10.
    Briceño-Arias, L.M., Combettes, P.L.: Monotone operator methods for Nash equilibria in non-potential games. In: Bailey, D.H., Bauschke, H.H., Borwein, P., Garvan, F., Thera, M., Vanderwerff, J.D., Wolkowicz, H. (eds.) Computational and Analytical Mathematics. Springer, New York (2013)Google Scholar
  11. 11.
    Briceño-Arias, L.M., Combettes, P.L.: A monotone + skew splitting model for composite monotone inclusions in duality. SIAM J. Optim. 21, 1230–1250 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Combettes, P.L.: The convex feasibility problem in image recovery. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 95, pp. 155–270. Academic Press, New York (1996)Google Scholar
  14. 14.
    Combettes, P.L.: Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization 53, 475–504 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward splitting. Multiscale Model Simul. 4, 1168–1200 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Combettes, P.L.: Systems of structured monotone inclusions: duality, algorithms, and applications. SIAM J. Optim. 23, 2420–2447 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Combettes, P.L., Dũng, D, Vũ, B.C.: Proximity for sums of composite functions. J. Math. Anal. Appl. 380, 680–688 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20, 307–330 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Jezierska, A., Chouzenoux, E., Pesquet, J.-C., Talbot, H.: A primal-dual proximal splitting approach for restoring data corrupted with Poisson–Gaussian noise. In: Proc. Int. Conf. Acoust., Speech Signal Process., pp. 1085–1088, Kyoto, Japan (2012)Google Scholar
  20. 20.
    Eckstein, J., Svaiter, B.F.: A family of projective splitting methods for the sum of two maximal monotone operators. Math. Program., Ser. B 111, 173–199 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Papafitsoros, K., Schönlieb, C.-B., Sengul, B.: Combined first and second order total variation inpainting using split Bregman. Image Process On Line 3, 112–136 (2013)CrossRefGoogle Scholar
  22. 22.
    Svaiter, B.F.: On weak convergence on Douglas–Rachford method. SIAM J. Control Optim. 49, 280–287 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv. Comput. Math. 38, 667–681 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Vũ, B.C.: A splitting algorithm for coupled system of primal-dual monotone inclusions. J. Optim. Theory Appl. (2013). doi: 10.1007/s10957-014-0526-6 Google Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2015

Authors and Affiliations

  1. 1.Information Technology InstituteVietnam National UniversityHanoiVietnam
  2. 2.Department of MathematicsVietnam National UniversityHanoiVietnam

Personalised recommendations