Vietnam Journal of Mathematics

, Volume 43, Issue 1, pp 71–91 | Cite as

A Fixed Point Scheme for Nonexpansive Mappings, Variational Inequalities and Equilibrium Problems

  • Pham N. Anh
  • Le Q. Thuy
  • Do D. Thanh


The purpose of this paper is to introduce a new iteration scheme and prove a strong convergence theorem for finding a common element of the fixed point set of a nonexpansive mapping, the solution set of variational inequalities and the solution set of equilibrium problems. Under certain conditions on parameters, we show that the iterative sequences generated by the scheme strongly converge to a common element in a real Hilbert space.


Nonexpansive Pseudomonotone Continuous Fixed point Variational inequalities Equilibrium problems 

Mathematics Subject Classification (2000)

65K10 90C33 



This work is supported by the Vietnam Institute for Advanced Study in Mathematics.

We are very grateful to two anonymous referees for their really helpful and constructive comments on improving the paper.


  1. 1.
    Anh, P.N.: Strong convergence theorems for nonexpansive mappings and Ky Fan inequalities. J. Optim. Theory Appl. 154, 303–320 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Anh, P.N.: A hybrid extragradient method extended to fixed point problems and equilibrium problems. Optimization 62, 271–283 (2013) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Anh, P.N.: A hybrid extragradient method for pseudomonotone equilibrium problems and fixed point problems. Bull. Malays. Math. Soc. 36, 107–116 (2013) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Anh, P.N., Son, D.X.: A new iterative scheme for pseudomonotone equilibrium problems and a finite family of pseudocontractions. J. Appl. Math. Inform. 29, 1179–1191 (2011) zbMATHMathSciNetGoogle Scholar
  5. 5.
    Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350–2360 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Blum, E., Oettli, W.: From optimization and variational inequality to equilibrium problems. Math. Stud. 63, 127–149 (1994) MathSciNetGoogle Scholar
  7. 7.
    Ceng, L.C., Petruşel, A., Yao, J.C.: Iterative approaches to solving equilibrium problems and fixed point problems of infinitely many nonexpansive mappings. J. Optim. Theory Appl. 143, 37–58 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005) zbMATHMathSciNetGoogle Scholar
  9. 9.
    Daniele, P., Giannessi, F., Maugeri, A.: Equilibrium Problems and Variational Models. Springer, New York (2003) CrossRefzbMATHGoogle Scholar
  10. 10.
    Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cambridge (1990) CrossRefzbMATHGoogle Scholar
  11. 11.
    Kim, J.K., Anh, P.N., Nam, Y.M.: Strong convergence of an extended extragradient method for equilibrium problems and fixed point problems. J. Korean Math. Soc. 49, 187–200 (2012) CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Marino, G., Xu, H.-K.: A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 318, 43–52 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Mastroeni, G.: Gap functions for equilibrium problems. J. Glob. Optim. 27, 411–426 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Peng, J.-W., Yao, J.-C.: Some new extragradient-like methods for generalized equilibrium problems, fixed point problems and variational inequality problems. Optim. Methods Softw. 25, 677–698 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Takahashi, S., Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331, 506–515 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Wang, S., Guo, B.: New iterative scheme with nonexpansive mappings for equilibrium problems and variational inequality problems in Hilbert spaces. J. Comput. Appl. Math. 233, 2620–2630 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Wang, S., Cho, Y.J., Qin, X.: A new iterative method for solving equilibrium problems and fixed point problems for an infinite family of nonexpansive mappings. Fixed Point Theory Appl. (2010). doi: 10.1155/2010/165098 MathSciNetGoogle Scholar
  19. 19.
    Wangkeeree, R., Preechasilp, P.: A new iterative scheme for solving the equilibrium problems, variational inequality problems, and fixed point problems in Hilbert spaces. J. Appl. Math. 154968 (2012). 21 pp. doi: 10.1155/2012/154968
  20. 20.
    Xu, H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659–678 (2003) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2014

Authors and Affiliations

  1. 1.Department of Scientific FundamentalsPosts and Telecommunications Institute of TechnologyHanoiVietnam
  2. 2.School of Applied Mathematics and InformaticsHa Noi University of Science and TechnologyHai Ba TrungVietnam
  3. 3.Department of MathematicsHaiphong UniversityHaiphongVietnam

Personalised recommendations