Advertisement

Finding the ideal automotive battery concept

A model-based approach on cell selection, modularization and thermal management
  • Christoph ReiterEmail author
  • Xue Lin
  • Lars-Eric Schlereth
  • Markus Lienkamp
Originalarbeiten/Originals
  • 34 Downloads

Abstract

There are many degrees of freedom in the design of a battery concept for electric vehicles. A suitable lithium-ion battery (LIB) must be selected from different cell chemistries, types and sizes. During operation, the LIBs must always be kept in the optimum temperature range, thus a suitable battery thermal management system (BTMS) architecture must be developed. All these decisions have a direct impact on the later characteristics of the battery system and are subject to complex interactions. Therefore, the question arises of an automated method that supports the user in finding the ideal overall battery concept for a given vehicle concept. This paper introduces and discusses such a process. After an analysis of all relevant electrical and thermal influences and previous work on this topic, an approach is derived that allows automatic cell selection, modularization and BTMS development considering all relevant influences up to the vehicle level. The approach considers the electrical and thermal behavior on both the cell and the system level. Furthermore, the BTMS is simulated using a novel approach allowing the configuration of air and liquid cooling with any desired configuration. The complete simulation framework is made available under an open-source license.

Abbreviations

BEV

Battery electric vehicle

BTMS

Battery thermal management system

CCCV

Constant current constant voltage

CFD

Computational fluid dynamics

ECM

Equivalent circuit model

LIB

Lithium-ion battery

PCM

Phase change material

SEI

Solid electrolyte interphase

SOC

State-of-charge

Auf der Suche nach dem optimalen Batteriekonzept für Elektrofahrzeuge

Ein modell-basierter Ansatz zur Zellauswahl, Modularisierung und Thermomanagement eines Batteriesystems

Zusammenfassung

Bei der Entwicklung eines Batteriekonzepts für Elektrofahrzeuge gibt es viele Freiheitsgrade. Eine geeignete Lithium-Ionen-Batterie (LIB) muss aus verschiedenen Zellchemien, -typen und -größen ausgewählt werden. Während des Betriebs müssen die LIBs immer in ihrem optimalen Temperaturbereich gehalten werden, wofür eine geeignete BTMS-Architektur (Batterie-Thermomanagementsystem) notwendig ist. Alle diese Entscheidungen haben einen direkten Einfluss auf die späteren Eigenschaften des Batteriesystems und unterliegen komplexen Wechselwirkungen. Es stellt sich daher die Frage nach einem automatisierten Verfahren, das den Anwender dabei unterstützt, das ideale Gesamtbatteriekonzept für ein bestimmtes Fahrzeugkonzept zu finden. In diesem Paper wird eine solche Herangehensweise vorgestellt und diskutiert. Nach der Analyse aller relevanten elektrischen und thermischen Einflüsse und vorangegangener Arbeiten wird ein Ansatz abgeleitet, der eine automatische Zellauswahl, Modularisierung und BTMS-Entwicklung unter Berücksichtigung aller relevanten Einflüsse bis auf Fahrzeugebene ermöglicht. Der Ansatz berücksichtigt das elektrische und thermische Verhalten sowohl auf der Zell- als auch auf der Systemebene. Darüber hinaus wird das BTMS mit einem neuartigen Ansatz simuliert, der die Konfiguration der Luft- und Flüssigkeitskühlung mit beliebiger Konfiguration ermöglicht. Die komplette Simulationsumgebung wird unter einer Open-Source-Lizenz zur Verfügung gestellt.

Notes

Acknowledgements

C.R. is the first and main author. He identified the research gap, developed the underlying concepts, supported and advised L.-E.S. with the implementation of the simulation framework and wrote the paper except where noted otherwise.

X.L. reviewed the paper and gave advice on the impact of different cell types and sizes and researched and wrote the parts considering aging and thermal gradients inside cells.

L.-E.S. carried out the literature review on electrical and thermal LIB behavior and implemented the simulation framework.

M.L. made an essential contribution to the conception of the research project. He revised the paper critically for important intellectual content. M.L. gave final approval of the version to be published and agrees to all aspects of the work. As a guarantor, he accepts responsibility for the overall integrity of the paper.

The authors want to thank the Bavarian Research Foundation for funding the research as part of the project NEmo – Nutzerorientierte Elektromobilität [user-oriented electromobility](AZ-1203-16).

References

  1. 1.
    Ahmed S, Bloom I, Jansen AN, Tanim T, Dufek EJ, Pesaran A, Burnham A, Carlson RB, Dias F, Hardy K, Keyser M, Kreuzer C, Markel A, Meintz A, Michelbacher C, Mohanpurkar M, Nelson PA, Robertson DC, Scoffield D, Shirk M, Stephens T, Vijayagopal R, Zhang J (2017) Enabling fast charging – a battery technology gap assessment. J Power Sources 367:250–262.  https://doi.org/10.1016/j.jpowsour.2017.06.055 Google Scholar
  2. 2.
    Arnold S, Nguyen T, Arunachala R, Jossen A (2015) Study of inhomogeneity in large format li-ion cells with different multiphysics models. Comsol Conference, Kuala Lumpur, MalaysiaGoogle Scholar
  3. 3.
    Baumann M, Wildfeuer L, Rohr S, Lienkamp M (2018) Parameter variations within li-ion battery packs – theoretical investigations and experimental quantification. J Energy Storage 18:295–307.  https://doi.org/10.1016/j.est.2018.04.031 Google Scholar
  4. 4.
    Bell IH, Wronski J, Quoilin S, Lemort V (2014) Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Ind Eng Chem Res 53(6):2498–2508.  https://doi.org/10.1021/ie4033999 Google Scholar
  5. 5.
    Bruen T, Marco J, Gama M (2014) Current variation in parallelized energy storage systems. IEEE Vehicle Power and Propulsion Conference (VPPC), 2014, pp 1–6  https://doi.org/10.1109/VPPC.2014.7007040 Google Scholar
  6. 6.
    Danzer MA, Liebau V, Maglia F (2015) Aging of lithium-ion batteries for electric vehicles. In: Scrosati B, Garche J, Tillmetz W (eds) Advances in battery technologies for electric vehicles, Woodhead publishing series in energy. Woodhead Publishing, Cambridge, UK, pp 359–387  https://doi.org/10.1016/B978-1-78242-377-5.00014-5 Google Scholar
  7. 7.
    Dubarry M, Vuillaume N, Liaw BY (2010) Origins and accommodation of cell variations in li-ion battery pack modeling. Int J Energy Res 34(2):216–231.  https://doi.org/10.1002/er.1668 Google Scholar
  8. 8.
    Ebert F, Sextl G, Lienkamp M (2017) Effect of a flexible battery module bracing on cell aging. Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER), 11.04.2017–13.04.2017 IEEE, Monaco, pp 1–5  https://doi.org/10.1109/EVER.2017.7935871 Google Scholar
  9. 9.
    Eddahech A, Briat O, Vinassa JM (2013) Thermal characterization of a high-power lithium-ion battery: potentiometric and calorimetric measurement of entropy changes. Energy 61:432–439.  https://doi.org/10.1016/j.energy.2013.09.028 Google Scholar
  10. 10.
    Erb DC, Kumar S, Carlson E, Ehrenberg IM, Sarma SE (2017) Analytical methods for determining the effects of lithium-ion cell size in aligned air-cooled battery packs. J Energy Storage 10:39–47.  https://doi.org/10.1016/j.est.2016.12.003 Google Scholar
  11. 11.
    Felfernig A, Burke R (2008) Constraint-based recommender systems: technologies and research issues. 10th International Conference on Electronic Commerce, ICEC ’08, NY, USA ACM, New York, pp 3:1–3:10  https://doi.org/10.1145/1409540.1409544 (Proceedings)Google Scholar
  12. 12.
    Fleckenstein M, Bohlen O, Bäker B (2012) Aging effect of temperature gradients in li-ion cells experimental and simulative investigations and the consequences on thermal battery management. World Electr Veh J 5(2):322–333.  https://doi.org/10.3390/wevj5020322 Google Scholar
  13. 13.
    Gnielinski V (2013) G2 Wärmeübertragung im konzentrischen Ringspalt und im ebenen Spalt. VDI-Wärmeatlas, VDI-Buch, vol 34. Springer Vieweg, Berlin, pp 793–800  https://doi.org/10.1007/978-3-642-19981-3_43 Google Scholar
  14. 14.
    Gnielinski V (2013) G7 Querumströmte einzelne Rohrreihen und Rohrbündel. VDI-Wärmeatlas, VDI-Buch, vol 44. Springer Vieweg, Berlin, pp 819–824  https://doi.org/10.1007/978-3-642-19981-3_48 Google Scholar
  15. 15.
    Gross O, Clark S (2011) Optimizing electric vehicle battery life through battery thermal management. Sae Int J Engines 4(1):1928–1943.  https://doi.org/10.4271/2011-01-1370 Google Scholar
  16. 16.
    Han X, Ouyang M, Lu L, Li J, Zheng Y, Li Z (2014) A comparative study of commercial lithium ion battery cycle life in electrical vehicle: aging mechanism identification. J Power Sources 251:38–54.  https://doi.org/10.1016/j.jpowsour.2013.11.029 Google Scholar
  17. 17.
    Hermann WA: Liquid cooling manifold with multi-function thermal interface (11 Sept 2012). US Patent 8,263,250Google Scholar
  18. 18.
    Hewson JA, Anderson P, Gordon AD (2013) Constraint-based autonomic reconfiguration. IEEE 7th International Conference on Self-Adaptive and Self-Organizing Systems, 2013 IEEE, Philadelphia, pp 101–110  https://doi.org/10.1109/SASO.2013.23 Google Scholar
  19. 19.
    Hosseinzadeh E, Genieser R, Worwood D, Barai A, Marco J, Jennings P (2018) A systematic approach for electrochemical-thermal modelling of a large format lithium-ion battery for electric vehicle application. J Power Sources 382:77–94.  https://doi.org/10.1016/j.jpowsour.2018.02.027 Google Scholar
  20. 20.
    Ianniciello L, Biwolé PH, Achard P (2018) Electric vehicles batteries thermal management systems employing phase change materials. J Power Sources 378:383–403.  https://doi.org/10.1016/j.jpowsour.2017.12.071 Google Scholar
  21. 21.
    Ji Y, Wang CY (2013) Heating strategies for li-ion batteries operated from subzero temperatures. Electrochim Acta 107:664–674.  https://doi.org/10.1016/j.electacta.2013.03.147 Google Scholar
  22. 22.
    Jin LW, Lee PS, Kong XX, Fan Y, Chou SK (2014) Ultra-thin minichannel LCP for EV battery thermal management. Appl Energy 113:1786–1794.  https://doi.org/10.1016/j.apenergy.2013.07.013 Google Scholar
  23. 23.
    Jossen A (2006) Fundamentals of battery dynamics. J Power Sources 154(2):530–538.  https://doi.org/10.1016/j.jpowsour.2005.10.041 Google Scholar
  24. 24.
    Karimi G, Dehghan AR (2014) Thermal analysis of high-power lithium-ion battery packs using flow network approach. Int J Energy Res 38(14):1793–1811.  https://doi.org/10.1002/er.3173 Google Scholar
  25. 25.
    Karimi G, Li X (2013) Thermal management of lithium-ion batteries for electric vehicles. Int J Energy Res 37(1):13–24.  https://doi.org/10.1002/er.1956 Google Scholar
  26. 26.
    Kerler M (2019) Eine Methode zur Bestimmung der optimalen Zellgrösse für Elektrofahrzeuge. Technische Universität, München (Dissertation)Google Scholar
  27. 27.
    Kerler M, Hoffmann F, Lienkamp M (2017) Optimization through rapid meta-model based transient thermal simulation of lithium ion battery cells. IEEE Transportation and Electrification Conference and Expo (ITEC), 2017 IEEE, Piscataway, NJ, pp 334–341  https://doi.org/10.1109/ITEC.2017.7993294 Google Scholar
  28. 28.
    Kizilel R, Sabbah R, Selman JR, Al-Hallaj S (2009) An alternative cooling system to enhance the safety of li-ion battery packs. J Power Sources 194(2):1105–1112.  https://doi.org/10.1016/j.jpowsour.2009.06.074 Google Scholar
  29. 29.
    Lee DW (2014) Development of BLDC motor and multi-blade fan for HEV battery cooling system. Int J Automot Technol 15(7):1101–1106.  https://doi.org/10.1007/s12239-014-0114-7 Google Scholar
  30. 30.
    Loges A, Herberger S, Seegert P, Wetzel T (2016) A study on specific heat capacities of li-ion cell components and their influence on thermal management. J Power Sources 336:341–350.  https://doi.org/10.1016/j.jpowsour.2016.10.049 Google Scholar
  31. 31.
    Meis C, Mueller S, Rohr S, Kerler M, Lienkamp M (2015) Guide for the focused utilization of aging models for lithium-ion batteries – an automotive perspective. Sae Int J Passeng Cars – Electron Electr Syst 8(1).  https://doi.org/10.4271/2015-01-0255 Google Scholar
  32. 32.
    Moo CS, Ng KS, Hsieh YC (2008) Parallel operation of battery power modules. Ieee Trans Energy Convers 23(2):701–707.  https://doi.org/10.1109/TEC.2007.914310 Google Scholar
  33. 33.
    Morche D, Schmitt F, Genuit K, Elsen O, Kampker A, Friedrich B (2013) Fahrzeugkonzeption für die Elektromobilität. In: Kampker A, Vallée D, Schnettler A (eds) Elektromobilität: Grundlagen einer Zukunftstechnologie. Springer, Berlin, Heidelberg, pp 149–234  https://doi.org/10.1007/978-3-642-31986-0_5 Google Scholar
  34. 34.
    Neuendorf R, Zuck B (2013) Kühlung und Durchströmung. In: Schütz T (ed) Hucho – Aerodynamik des Automobils, ATZ / MTZ-Fachbuch. Springer Vieweg, Wiesbaden, pp 485–522  https://doi.org/10.1007/978-3-8348-2316-8_7 Google Scholar
  35. 35.
    Nieto N, Díaz L, Gastelurrutia J, Blanco F, Ramos JC, Rivas A (2014) Novel thermal management system design methodology for power lithium-ion battery. J Power Sources 272:291–302.  https://doi.org/10.1016/j.jpowsour.2014.07.169 Google Scholar
  36. 36.
    Offer GJ, Yufit V, Howey DA, Wu B, Brandon NP (2012) Module design and fault diagnosis in electric vehicle batteries. J Power Sources 206:383–392.  https://doi.org/10.1016/j.jpowsour.2012.01.087 Google Scholar
  37. 37.
    Pan D, Xu S, Lin C, Chang G (2016) Thermal management of power batteries for electric vehicles using phase change materials: a review. SAE technical paper series, SAE technical paper series. SAE International400 Commonwealth Drive, Warrendale, PA, United States  https://doi.org/10.4271/2016-01-1204 Google Scholar
  38. 38.
    Parrish R, Elankumaran K, Gandhi M, Nance B, Meehan P, Milburn D, Siddiqui S, Brenz A (2011) Voltec battery design and manufacturing. SAE technical paper series, SAE technical paper series. SAE International400 Commonwealth Drive, Warrendale, PA, United States  https://doi.org/10.4271/2011-01-1360 Google Scholar
  39. 39.
    Paul S, Diegelmann C, Kabza H, Tillmetz W (2013) Analysis of ageing inhomogeneities in lithium-ion battery systems. J Power Sources 239:642–650.  https://doi.org/10.1016/j.jpowsour.2013.01.068 Google Scholar
  40. 40.
    Pesaran AA (2001) Battery thermal management in EV and HEVs: issues and solutions. Battery Man 43(5):34–49Google Scholar
  41. 41.
    Pesaran AA, Burch S, Keyser M (1999) An approach for designing thermal management systems for electric and hybrid vehicle battery packs. 4th vehicle thermal management systems, pp 24–27Google Scholar
  42. 42.
    Rahmoun A, Biechl H, Rosin A (2013) Evaluation of equivalent circuit diagrams and transfer functions for modeling of lithium-ion batteries. Electr Control Commun Eng 2(1).  https://doi.org/10.2478/ecce-2013-0005 Google Scholar
  43. 43.
    Reiter C, Wassiliadis N, Wildfeuer L, Wurster T, Lienkamp M (2018) Range extension of electric vehicles through improved battery capacity utilization: potentials, risks and strategies. In. 21st International Conference on Intelligent Transportation Systems (ITSC), 2018 IEEE, Maui, pp 321–326  https://doi.org/10.1109/ITSC.2018.8569455 Google Scholar
  44. 44.
    Reiter C, Wildfeuer L, Wassiliadis N, Baumann M, Krahl T, Dirnecker J, Lienkamp M (2019) A holistic approach for simulation and evaluation of electrical and thermal loads in lithium-ion battery systems. 14th International Conference on Ecological Vehicles and Renewable Energies (EVER), 2019 IEEE, Monaco, (Forthcoming)Google Scholar
  45. 45.
    Schmalstieg J, Käbitz S, Ecker M, Sauer DU (2014) A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. J Power Sources 257:325–334.  https://doi.org/10.1016/j.jpowsour.2014.02.012 Google Scholar
  46. 46.
    Schneeweiss D, Hofstedt P (2013) FdConfig: a constraint-based interactive product configurator. In: Tompits H, Abreu S, Oetsch J, Pührer J, Seipel D, Umeda M, Wolf A (eds) Applications of declarative programming and knowledge management. Springer, Berlin, Heidelberg, pp 239–255  https://doi.org/10.1007/978-3-642-41524-1_13 Google Scholar
  47. 47.
    Schuster SF, Bach T, Fleder E, Müller J, Brand M, Sextl G, Jossen A (2015) Nonlinear aging characteristics of lithium-ion cells under different operational conditions. J Energy Storage 1:44–53.  https://doi.org/10.1016/j.est.2015.05.003 Google Scholar
  48. 48.
    Shah K, Drake SJ, Wetz DA, Ostanek JK, Miller SP, Heinzel JM, Jain A (2014) Modeling of steady-state convective cooling of cylindrical li-ion cells. J Power Sources 258:374–381.  https://doi.org/10.1016/j.jpowsour.2014.01.115 Google Scholar
  49. 49.
    Stephan P (2013) B2 Berechnungsmethoden für Wärmeleitung, konvektiven Wärmeübergang und Wärmestrahlung. VDI-Wärmeatlas, VDI-Buch, vol 1. Springer Vieweg, Berlin, pp 23–36  https://doi.org/10.1007/978-3-642-19981-3_4 Google Scholar
  50. 50.
    Sun H, Tossan B, Brouns D (2011) Thermal behavior study on HEV air-cooled battery pack. SAE Technical Paper Series, SAE Technical Paper Series. SAE International400 Commonwealth Drive, Warrendale, PA, United States  https://doi.org/10.4271/2011-01-1368 Google Scholar
  51. 51.
    Tanim TR, Shirk MG, Bewley RL, Dufek EJ, Liaw BY (2018) Fast charge implications: pack and cell analysis and comparison. J Power Sources 381:56–65.  https://doi.org/10.1016/j.jpowsour.2018.01.091 Google Scholar
  52. 52.
    Traussnig A, Jansen W, Petutschnig H, Steiner S, Gruen P (2016) A simulation approach for vehicle life-time thermal analysis applied to a HEV battery system. SAE Technical Paper Series, SAE Technical Paper Series. SAE International400 Commonwealth Drive, Warrendale, PA, United States  https://doi.org/10.4271/2016-01-0201 Google Scholar
  53. 53.
    Vetter J, Novák P, Wagner MR, Veit C, Möller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147(1-2):269–281.  https://doi.org/10.1016/j.jpowsour.2005.01.006 Google Scholar
  54. 54.
    Waag W, Käbitz S, Sauer DU (2013) Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl Energy 102:885–897.  https://doi.org/10.1016/j.apenergy.2012.09.030 Google Scholar
  55. 55.
    Xia Q, Wang Z, Ren Y, Sun B, Yang D, Feng Q (2018) A reliability design method for a lithium-ion battery pack considering the thermal disequilibrium in electric vehicles. J Power Sources 386:10–20.  https://doi.org/10.1016/j.jpowsour.2018.03.036 Google Scholar
  56. 56.
    Yang XG, Wang CY (2018) Understanding the trilemma of fast charging, energy density and cycle life of lithium-ion batteries. J Power Sources 402:489–498.  https://doi.org/10.1016/j.jpowsour.2018.09.069 Google Scholar
  57. 57.
    Yen E, Han T, Kher S (2015) Automating battery pack design: systems-level simulation energizes the virtual prototyping process for electric vehicle batteries. Ansys Advant IX(2):18–21 (http://www.ansys.com/About-ANSYS/advantage-magazine/Volume-IX-Issue-2-2015)Google Scholar
  58. 58.
    Zeyen MG, Wiebelt A (2013) Thermisches Management der Batterie. In: Korthauer R (ed) Handbuch Lithium-Ionen-Batterien. Springer Vieweg, Wiesbaden, pp 165–175  https://doi.org/10.1007/978-3-642-30653-2_13 Google Scholar
  59. 59.
    Zhang SS (2006) The effect of the charging protocol on the cycle life of a li-ion battery. J Power Sources 161(2):1385–1391.  https://doi.org/10.1016/j.jpowsour.2006.06.040 Google Scholar
  60. 60.
    Zhao R, Zhang S, Liu J, Gu J (2015) A review of thermal performance improving methods of lithium ion battery: electrode modification and thermal management system. J Power Sources 299:557–577.  https://doi.org/10.1016/j.jpowsour.2015.09.001 Google Scholar
  61. 61.
    Zhou W (2016) Modellbasierte Auslegungsmethode von Temperierungssystemen für Hochvolt-Batterien in Personenkraftfahrzeugen. Aachener Beiträge des ISEA, vol 81. RWTH Aachen and Shaker Verlag GmbH, Aachen (Dissertation)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Automotive Technology, Department of Mechanical EngineeringTechnical University of MunichGarchingGermany

Personalised recommendations