Skip to main content
Log in

Verformungsanalyse elektrisch leitender metallischer Bauteile bei Magnetimpulsbearbeitung

Deformation analysis of conductive metallic components under the action of electromagnetic fields

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Zusammenfassung

In der vorliegenden Arbeit wird die Verformung elektrisch leitender metallischer Bauteile unter Einwirkung elektromagnetischer Felder untersucht. Zu diesem Zweck wird eine Variationsformulierung vorgestellt. Die Kopplung der Ausbreitung von elektromagnetischen Feldern mit den Verformungen wird durch die Einführung von elektromagnetischen Kräften berücksichtigt. Das vorgeschlagene Modell erlaubt, die Verformung der Bauteile bei Magnetimpulsbearbeitung numerisch zu untersuchen.

Abstract

In the present study the deformation of conductive metallic systems under the action of electromagnetic fields is investigated. For this purpose, a variational formulation is introduced. The coupling of the propagation of electromagnetic fields and the deformation is taken into account by the introduction of electromagnetic forces. The suggested model allows the numerical analysis of the deformation of electrically conductive metallic systems under magnetic pulse processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Alessandroni S, Andreaus U, Dell’Isola F, Porfiri M (2004) Piezo-electromechanical (pem) kirchhoff–love plates. Eur J Mech 23(4):689–702

    Article  Google Scholar 

  2. Altenbach H, Naumenko K, Gorash Y (2008) Creep analysis for a wide stress range based on stress relaxation experiments. Int J Mod Phys B 22(31n32):5413–5418

    Article  Google Scholar 

  3. Altenbach H, Morachkovsky O, Naumenko K, Lavinsky D (2015) Inelastic deformation of conductive bodies in electromagnetic fields. Continuum Mech Thermodyn. https://doi.org/10.1007/s00161-015-0484-8

    Article  MATH  Google Scholar 

  4. Andreaus U, Dell’Isola F, Porfiri M (2004) Piezoelectric passive distributed controllers for beam flexural vibrations. J Vib Control 10(5):625–659

    MATH  Google Scholar 

  5. Batygin YV (2014) Experimental test of the tool for the external emf removing dents on a car body. Int J Energy Power Eng 3(4):204–208

    Article  Google Scholar 

  6. Batygin YV, Golovashchenko SF, Gnatov AV (2013) Pulsed electromagnetic attraction of sheet metals–fundamentals and perspective applications. J Mater Process Technol 213(3):444–452

    Article  Google Scholar 

  7. Batygin YV, Golovashchenko SF, Gnatov AV (2014) Pulsed electromagnetic attraction of nonmagnetic sheet metals. J Mater Process Technol 214(2):390–401

    Article  Google Scholar 

  8. Bay F, Labbé V, Favennec Y, Chenot J (2003) A numerical model for induction heating processes coupling electromagnetism and thermomechanics. Int J Numer Methods Eng 58(6):839–867

    Article  Google Scholar 

  9. Belokon A, Eremeyev V, Nasedkin A, Solov’yev A (2000) Partitioned schemes of the finite-element method for dynamic problems of acoustoelectroelasticity. J Appl Math Mech 64(3):367–377

    Article  Google Scholar 

  10. Cazzani A, Atluri SN (1993) Four-noded mixed finite elements, using unsymmetric stresses, for linear analysis of membranes. Comput Mech 11(4):229–251

    Article  MathSciNet  Google Scholar 

  11. Cazzani A, Garusi E, Tralli A, Atluri SN (2005) A four-node hybrid assumed-strain finite element for laminated composite plates. Comput Mater Continua 2(1):23–38

    MATH  Google Scholar 

  12. Cui X, Mo J, Xiao S, Du E, Zhao J (2011) Numerical simulation of electromagnetic sheet bulging based on fem. Int J Adv Manuf Technol 57(1-4):127–134

    Article  Google Scholar 

  13. Deng J, Li C, Zhao Z, Tu F, Yu H (2007) Numerical simulation of magnetic flux and force in electromagnetic forming with attractive force. J Mater Process Technol 184(1):190–194

    Article  Google Scholar 

  14. Giorgio I, Galantucci L, Corte DA, Del Vescovo D (2015) Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: Current and upcoming applications. Int J Appl Electromagn Mech 47(4):1051–1084

    Article  Google Scholar 

  15. Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, Oxford

    MATH  Google Scholar 

  16. Nasedkin AV, Eremeyev VA (2014) Harmonic vibrations of nanosized piezoelectric bodies with surface effects. Z Angew Math Mech 94(10):878–892

    Article  MathSciNet  Google Scholar 

  17. Naumenko K, Altenbach H (2005) A phenomenological model for anisotropic creep in a multipass weld metal. Arch Appl Mech 74(11-12):808–819

    Article  Google Scholar 

  18. Naumenko K, Altenbach H (2016) Modeling high temperature materials behavior for structural analysis: part I: continuum mechanics foundations and constitutive models Bd. 28. Springer, Berlin, Heidelberg

    Google Scholar 

  19. Naumenko K, Kutschke A, Kostenko Y, Rudolf T (2011) Multi-axial thermo-mechanical analysis of power plant components from 9–12% cr steels at high temperature. Eng Fract Mech 78(8):1657–1668

    Article  Google Scholar 

  20. Nemkov V, Goldstein R (2003) Computer simulation for fundamental study and practical solutions to induction heating problems. Int J Comput Math Electr Electron Eng 22(1):181–191

    Article  Google Scholar 

  21. Psyk V, Risch D, Kinsey B, Tekkaya A, Kleiner M (2011) Electromagnetic forming – a review. J Mater Process Technol 211(5):787–829

    Article  Google Scholar 

  22. Simo J, Hughes T (2006) Computational inelasticity. Springer, Berlin, Heidelberg

    MATH  Google Scholar 

  23. Svendsen B, Chanda T (2003) Continuum thermodynamic modeling and simulation of electromagnetic metal forming. Tech Mech 23:103–112

    Google Scholar 

  24. Turenko AN (2009) Pulse magnetic fields to progressive technologies (in Russ.). In: Turenko AN, Batygin YV et al (Hrsg) Theory and experiment of thin-walled metal attraction by pulsed magnetic fields. KhNADU, Kharkov

    Google Scholar 

Download references

Danksagung

Die Arbeit wurde durch das Programm Ostpartnerschaften (V. Konkin, D. Lavinsky) des DAAD gefördert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Altenbach.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altenbach, H., Konkin, V., Lavinsky, D. et al. Verformungsanalyse elektrisch leitender metallischer Bauteile bei Magnetimpulsbearbeitung. Forsch Ingenieurwes 82, 371–377 (2018). https://doi.org/10.1007/s10010-018-0285-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-018-0285-x

Navigation