Advertisement

Forschung im Ingenieurwesen

, Volume 82, Issue 4, pp 371–377 | Cite as

Verformungsanalyse elektrisch leitender metallischer Bauteile bei Magnetimpulsbearbeitung

  • Holm Altenbach
  • Valery Konkin
  • Denis Lavinsky
  • Oleg Morachkovsky
  • Konstantin Naumenko
Originalarbeiten/Originals
  • 107 Downloads

Zusammenfassung

In der vorliegenden Arbeit wird die Verformung elektrisch leitender metallischer Bauteile unter Einwirkung elektromagnetischer Felder untersucht. Zu diesem Zweck wird eine Variationsformulierung vorgestellt. Die Kopplung der Ausbreitung von elektromagnetischen Feldern mit den Verformungen wird durch die Einführung von elektromagnetischen Kräften berücksichtigt. Das vorgeschlagene Modell erlaubt, die Verformung der Bauteile bei Magnetimpulsbearbeitung numerisch zu untersuchen.

Deformation analysis of conductive metallic components under the action of electromagnetic fields

Abstract

In the present study the deformation of conductive metallic systems under the action of electromagnetic fields is investigated. For this purpose, a variational formulation is introduced. The coupling of the propagation of electromagnetic fields and the deformation is taken into account by the introduction of electromagnetic forces. The suggested model allows the numerical analysis of the deformation of electrically conductive metallic systems under magnetic pulse processing.

Notes

Danksagung

Die Arbeit wurde durch das Programm Ostpartnerschaften (V. Konkin, D. Lavinsky) des DAAD gefördert.

Literatur

  1. 1.
    Alessandroni S, Andreaus U, Dell’Isola F, Porfiri M (2004) Piezo-electromechanical (pem) kirchhoff–love plates. Eur J Mech 23(4):689–702CrossRefGoogle Scholar
  2. 2.
    Altenbach H, Naumenko K, Gorash Y (2008) Creep analysis for a wide stress range based on stress relaxation experiments. Int J Mod Phys B 22(31n32):5413–5418CrossRefGoogle Scholar
  3. 3.
    Altenbach H, Morachkovsky O, Naumenko K, Lavinsky D (2015) Inelastic deformation of conductive bodies in electromagnetic fields. Continuum Mech Thermodyn.  https://doi.org/10.1007/s00161-015-0484-8 CrossRefzbMATHGoogle Scholar
  4. 4.
    Andreaus U, Dell’Isola F, Porfiri M (2004) Piezoelectric passive distributed controllers for beam flexural vibrations. J Vib Control 10(5):625–659zbMATHGoogle Scholar
  5. 5.
    Batygin YV (2014) Experimental test of the tool for the external emf removing dents on a car body. Int J Energy Power Eng 3(4):204–208CrossRefGoogle Scholar
  6. 6.
    Batygin YV, Golovashchenko SF, Gnatov AV (2013) Pulsed electromagnetic attraction of sheet metals–fundamentals and perspective applications. J Mater Process Technol 213(3):444–452CrossRefGoogle Scholar
  7. 7.
    Batygin YV, Golovashchenko SF, Gnatov AV (2014) Pulsed electromagnetic attraction of nonmagnetic sheet metals. J Mater Process Technol 214(2):390–401CrossRefGoogle Scholar
  8. 8.
    Bay F, Labbé V, Favennec Y, Chenot J (2003) A numerical model for induction heating processes coupling electromagnetism and thermomechanics. Int J Numer Methods Eng 58(6):839–867CrossRefGoogle Scholar
  9. 9.
    Belokon A, Eremeyev V, Nasedkin A, Solov’yev A (2000) Partitioned schemes of the finite-element method for dynamic problems of acoustoelectroelasticity. J Appl Math Mech 64(3):367–377CrossRefGoogle Scholar
  10. 10.
    Cazzani A, Atluri SN (1993) Four-noded mixed finite elements, using unsymmetric stresses, for linear analysis of membranes. Comput Mech 11(4):229–251MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cazzani A, Garusi E, Tralli A, Atluri SN (2005) A four-node hybrid assumed-strain finite element for laminated composite plates. Comput Mater Continua 2(1):23–38zbMATHGoogle Scholar
  12. 12.
    Cui X, Mo J, Xiao S, Du E, Zhao J (2011) Numerical simulation of electromagnetic sheet bulging based on fem. Int J Adv Manuf Technol 57(1-4):127–134CrossRefGoogle Scholar
  13. 13.
    Deng J, Li C, Zhao Z, Tu F, Yu H (2007) Numerical simulation of magnetic flux and force in electromagnetic forming with attractive force. J Mater Process Technol 184(1):190–194CrossRefGoogle Scholar
  14. 14.
    Giorgio I, Galantucci L, Corte DA, Del Vescovo D (2015) Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: Current and upcoming applications. Int J Appl Electromagn Mech 47(4):1051–1084CrossRefGoogle Scholar
  15. 15.
    Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, OxfordzbMATHGoogle Scholar
  16. 16.
    Nasedkin AV, Eremeyev VA (2014) Harmonic vibrations of nanosized piezoelectric bodies with surface effects. Z Angew Math Mech 94(10):878–892MathSciNetCrossRefGoogle Scholar
  17. 17.
    Naumenko K, Altenbach H (2005) A phenomenological model for anisotropic creep in a multipass weld metal. Arch Appl Mech 74(11-12):808–819CrossRefGoogle Scholar
  18. 18.
    Naumenko K, Altenbach H (2016) Modeling high temperature materials behavior for structural analysis: part I: continuum mechanics foundations and constitutive models Bd. 28. Springer, Berlin, HeidelbergGoogle Scholar
  19. 19.
    Naumenko K, Kutschke A, Kostenko Y, Rudolf T (2011) Multi-axial thermo-mechanical analysis of power plant components from 9–12% cr steels at high temperature. Eng Fract Mech 78(8):1657–1668CrossRefGoogle Scholar
  20. 20.
    Nemkov V, Goldstein R (2003) Computer simulation for fundamental study and practical solutions to induction heating problems. Int J Comput Math Electr Electron Eng 22(1):181–191CrossRefGoogle Scholar
  21. 21.
    Psyk V, Risch D, Kinsey B, Tekkaya A, Kleiner M (2011) Electromagnetic forming – a review. J Mater Process Technol 211(5):787–829CrossRefGoogle Scholar
  22. 22.
    Simo J, Hughes T (2006) Computational inelasticity. Springer, Berlin, HeidelbergzbMATHGoogle Scholar
  23. 23.
    Svendsen B, Chanda T (2003) Continuum thermodynamic modeling and simulation of electromagnetic metal forming. Tech Mech 23:103–112Google Scholar
  24. 24.
    Turenko AN (2009) Pulse magnetic fields to progressive technologies (in Russ.). In: Turenko AN, Batygin YV et al (Hrsg) Theory and experiment of thin-walled metal attraction by pulsed magnetic fields. KhNADU, KharkovGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Holm Altenbach
    • 1
  • Valery Konkin
    • 2
  • Denis Lavinsky
    • 2
  • Oleg Morachkovsky
    • 2
  • Konstantin Naumenko
    • 1
  1. 1.Institut für MechanikOtto-von-Guericke-Universität MagdeburgMagdeburgDeutschland
  2. 2.Ingenieurphysikalische FakultätNationale Technische Universität „Kharkover Polytechnisches Institut“KharkovUkraine

Personalised recommendations