Advertisement

Forschung im Ingenieurwesen

, Volume 69, Issue 4, pp 216–222 | Cite as

Finite-Element-Simulation der nichtlinearen Verformung von Carbon/Carbon-Verbundwerkstoffen

  • K. TushtevEmail author
  • D. Koch
Originalarbeit

Zusammenfassung

Zur Beschreibung des mechanischen Verhaltens eines bidirektional verstärkten Carbon/Carbon-Verbundwerkstoffs wurde ein makroskopisches Modell entwickelt, mit dem das Spannungs-Dehnungs-Verhalten unter quasistatischer Beanspruchung korrekt vorhergesagt werden kann. Der untersuchte Werkstoff repräsentiert eine Gruppe keramischer Faserverbundwerkstoffe, die aufgrund ihrer geringen Matrixsteifigkeit und -festigkeit auch bei starker Grenzflächenbindung zwischen Faser und Matrix schadenstolerantes Materialverhalten aufweisen. Auftretende Schädigungen der Matrix und die inelastische Verformung des Werkstoffs werden im Werkstoffmodell berücksichtigt. Über neue Modellgleichungen, die in das kommerziell verfügbare Finite-Element-Programm MARC integriert werden, kann dann das Verformungsverhalten unter verschiedenen Belastungsrichtungen relativ zur Faserverstärkungsrichtung berechnet werden.

Finite element simulation of nonlinear deformation of Carbon/Carbon-Fiber reinforced composites

Abstract

The mechanical properties of a 2D continuous fiber reinforced Carbon/Carbon-composite are described with a macroscopic model. The chosen material is representative for ceramic matrix composites which are damage tolerant because of a porous and weak matrix and not because of a weak fiber matrix interphase. Occurring damage of the matrix and inelastic deformation of the composite are modeled and the corresponding equations are included to the finite-element-program MARC in order to calculate the stress-strain behavior dependent on different angles between loading direction and fiber orientation. Thus, the behavior in tensile, shear and mixed tensile-shear loading can be predicted.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aveston J, Cooper GA, Kelly A (1971) The Properties of Fiber Composites. In: Conf Proc National Physical Laboratory. IPC Scientic and Technical Press, Guildford, pp 15–26Google Scholar
  2. 2.
    Kerans RJ, Hay RS, Parthasarathy TA, Cinibulk MK (2002) Interface Design for Oxidation-Resistant Ceramic Composites. J Am Ceram Soc 85:2599–2632Google Scholar
  3. 3.
    Kuntz M, Grathwohl G (1998) Coulomb friction controlled bridging stresses and crack resistance of ceramic matrix composites. Mat Sci Eng A 250:313–319CrossRefGoogle Scholar
  4. 4.
    Naslain R (2004) Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos Sci Tech 64:155–170CrossRefGoogle Scholar
  5. 5.
    Marshall DB, Davis JB (2001) Ceramics for future power generation technology: fiber reinforced oxide composites. Curr Opin Solid St M 5:283–289CrossRefGoogle Scholar
  6. 6.
    Kerans RJ, Hay RS, Parthasarathy TA, Cinibulk MK (2002) Interface Design for Oxidation-Resistant Ceramic Composites. J Am Ceram Soc 85:2600–2632Google Scholar
  7. 7.
    Ahn BK, Curtin WA, Parthasarathy TA, Dutton RE (1998) Criteria for crack deflection/penetration criteria for fiber-reinforced ceramic matrix composites. Compos Sci Tech 58:1775–1784CrossRefGoogle Scholar
  8. 8.
    Curtin WA, Ahn BK, Takeda N (1998) Modeling brittle and tough stress–strain behavior in unidirectional ceramic matrix composites. Acta Mater 46:3409–3420CrossRefGoogle Scholar
  9. 9.
    Lamon J (2001) A micromechanics-based approach to the mechanical behavior of brittle-matrix composites. Compos Sci Tech 61:2259–2272CrossRefGoogle Scholar
  10. 10.
    Camus G (2000) Modelling of the mechanical behavior and damage processes of fibrous ceramic matrix composites: application to a 2-D SiC/SiC. Int J Solids Struct 37:919–942CrossRefzbMATHGoogle Scholar
  11. 11.
    Tu WC, Lange FF, Evans AG (1996) Concept for a Damage-Tolerant Ceramic Composite with “Strong” Interfaces. J Am Ceram Soc 79:417–424CrossRefGoogle Scholar
  12. 12.
    Levi CG, Yang JY, Dalgleish BJ, Zok FW, Evans AG (1998) Processing and Performance of an All-Oxide Ceramic Composite. J Am Ceram Soc 81:2077–2086Google Scholar
  13. 13.
    Haslam JJ, Berroth KE, Lange FF (2000) Processing and properties of an all-oxide composite with a porous matrix. J Eur Ceram Soc 20:607–618CrossRefGoogle Scholar
  14. 14.
    Kanka B, Schneider H (2000) Aluminosilicate fiber/mullite matrix composites with favorable high-temperature properties. J Eur Ceram Soc 20:619–623CrossRefGoogle Scholar
  15. 15.
    Anand K, Gupta V (1995) The effect of processing conditions on the compressive and shear strength of 2-D carbon-carbon laminates. Carbon 33:739–748CrossRefGoogle Scholar
  16. 16.
    Heathcote JA, Gong XY, Yang JY, Ramamurty U, Zok FW (1999) In-Plane Mechanical Properties of an All-Oxide Ceramic Composite. J Am Ceram Soc 82:2721–2751Google Scholar
  17. 17.
    Zok FW, Levi CG (2001) Mechanical Properties of Porous-Matrix Ceramic Composites. Adv Eng Mater 3:15–23CrossRefGoogle Scholar
  18. 18.
    Denk L, Hatta H, Misawa A, Somiya S (2001) Shear fracture of C/C composites with variable stacking sequence. Carbon 39:1505–1513CrossRefGoogle Scholar
  19. 19.
    Genin GM, Hutchinson JW (1997) Composite Laminates in Plane Stress: Constitutive Modeling and Stress Redistribution due to Matrix Cracking. J Am Ceram Soc 80:1245–1255CrossRefGoogle Scholar
  20. 20.
    Tushtev K, Horvath J, Koch D, Grathwohl G (2004) Versagensverhalten keramischer Faserverbundwerkstoffe mit poröser Matrix – experimentelle Untersuchungen und Modellierung. Materialwiss Werkst 35:143–150CrossRefGoogle Scholar
  21. 21.
    Koch D, Tushtev K, Grathwohl G (2004) Shear Properties of Carbon Fiber Reinforced Ceramic Composites. In: 28th International Cocoa Beach Conference and Exposition on Advanced Ceramics & Composites, Cocoa Beach, Florida, January 25–30, 2004Google Scholar
  22. 22.
    Chen WF, Han DJ (1988) Plasticity for structural engineers. Springer, New YorkzbMATHGoogle Scholar
  23. 23.
    Hill R (1950) The mathematical theory of plasticity. Oxford University Press, New YorkzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Keramische Werkstoffe und Bauteile, Fachbereich ProduktionstechnikUniversität BremenBremenDeutschland

Personalised recommendations