Quantitative properties of featured automata

  • Uli FahrenbergEmail author
  • Axel Legay
Foundations for Mastering Change Quantitative Variability Modelling and Analysis


A featured transition system is a transition system in which the transitions are annotated with feature expressions: Boolean expressions on a finite number of given features. Depending on its feature expression, each individual transition can be enabled when some features are present, and disabled for other sets of features. The behavior of a featured transition system hence depends on a given set of features. There are algorithms for featured transition systems which can check their properties for all sets of features at once, for example for LTL or CTL properties. Here we introduce a model of featured weighted automata which combines featured transition systems and (semiring-) weighted automata. We show that methods and techniques from weighted automata extend to featured weighted automata and devise algorithms to compute quantitative properties of featured weighted automata for all sets of features at once. We show applications to minimum reachability and to energy properties.


Featured transition system Weighted automaton Quantitative property Software product line 



  1. 1.
    Bloom, S. L.: Ésik, Z.: Iteration theories: the equational logic of iterative processes. EATCS Monographs on Theoretical Computer Science. Springer (1993)Google Scholar
  2. 2.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed automata with observers under energy constraints. In: Johansson, K.H., Wang, Y. (eds.) HSCC, pp. 61–70. ACM (2010)Google Scholar
  3. 3.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite runs in weighted timed automata with energy constraints. In: Cassez, F., Claude, J. (eds.) Formats, volume 5215 of LNCS, pp. 33–47. Springer (2008)Google Scholar
  4. 4.
    Bouyer, P., Larsen, K.G., Markey, N.: Lower-bound constrained runs in weighted timed automata. In: QEST, pp. 128–137. IEEE Computer Society (2012)Google Scholar
  5. 5.
    Chatterjee, K., Doyen, L.: Energy parity games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP (2), volume 6199 of LNCS, pp. 599–610. Springer (2010)Google Scholar
  6. 6.
    Classen, A., Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A., Raskin, J.-F.: Featured transition systems: foundations for verifying variability-intensive systems and their application to LTL model checking. IEEE Trans. Softw. Eng. 39(8), 1069–1089 (2013)CrossRefGoogle Scholar
  7. 7.
    Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall, London (1971)zbMATHGoogle Scholar
  8. 8.
    Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A.: Behavioural modelling and verification of real-time software product lines. In: de Almeida, E.S., Schwanninger, C., Benavides, D. (eds.) SPLC, pp. 66–75. ACM (2012)Google Scholar
  9. 9.
    Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A.: Beyond boolean product-line model checking: dealing with feature attributes and multi-features. In: Notkin, D., Cheng, B.H.C., Pohl, K. (eds.) ICSE, pp. 472–481. IEEE/ACM (2013)Google Scholar
  10. 10.
    Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Torunczyk, S.: Energy and mean-payoff games with imperfect information. In: CSL, pp. 260–274 (2010)CrossRefGoogle Scholar
  11. 11.
    Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Springer, Berlin (2009)CrossRefGoogle Scholar
  12. 12.
    Droste, M., Meinecke, I.: Weighted automata and regular expressions over valuation monoids. Int. J. Found. Comput. Sci. 22(8), 1829–1844 (2011)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ésik, Z., Fahrenberg, U., Legay, A.: \(^*\)-continuous Kleene \(\omega \)-algebras. In: Potapov, I. (ed) DLT, volume 9168 of LNCS, pp. 240–251. Springer (2015)Google Scholar
  14. 14.
    Ésik, Z., Fahrenberg, U., Legay, A.: \(^*\)-continuous Kleene \(\omega \)-algebras for energy problems. In: Matthes, R., Mio, M. (eds.) FICS, volume 191 of EPTCS, pp. 48–59 (2015)Google Scholar
  15. 15.
    Ésik, Z., Fahrenberg, U., Legay, A., Quaas, K.: Kleene algebras and semimodules for energy problems. In: Hung, D.V., Ogawa, M. (eds.) ATVA, volume 8172 of LNCS, pp. 102–117. Springer (2013)Google Scholar
  16. 16.
    Ésik, Z., Fahrenberg, U., Legay, A., Quaas, K.: An algebraic approach to energy problems I: \({}^*\)-continuous Kleene \(\omega \)-algebras. Acta Cybern. 23(1), 203–228 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ésik, Z., Fahrenberg, U., Legay, A., Quaas, K.: An algebraic approach to energy problems II: The algebra of energy functions. Acta Cybern. 23(1), 229–268 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ésik, Z., Kuich, W.: On iteration semiring-semimodule pairs. Semigroup Forum 75, 129–159 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ésik, Z., Kuich, W.: Finite automata. In: Handbook of Weighted Automata [11], pp. 69–104Google Scholar
  20. 20.
    Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy games in multiweighted automata. In: ICTAC, volume 6916 of LNCS, pp. 95–115. Springer (2011)Google Scholar
  21. 21.
    Fahrenberg, U., Legay, A.: Featured weighted automata. In: FormaliSE@ICSE, pp. 51–57. IEEE(2017)Google Scholar
  22. 22.
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inf. Comput. 110(2), 366–390 (1994)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Olaechea, R., Fahrenberg, U., Atlee, J.M., Legay, A.: Long-term average cost in featured transition systems. In: Hong, M (ed) SPLC, pp. 109–118. ACM (2016)Google Scholar
  24. 24.
    Quaas, K.: On the interval-bound problem for weighted timed automata. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA, volume 6638 of LNCS, pp. 452–464. Springer (2011)Google Scholar
  25. 25.
    Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 6:1–6:45 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.École polytechniquePalaiseauFrance
  2. 2.Université catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Aalborg UniversityAalborgDenmark

Personalised recommendations