Advertisement

What’s decidable about parametric timed automata?

  • Étienne AndréEmail author
Regular Paper

Abstract

Parametric timed automata (PTAs) are a powerful formalism to reason, simulate and formally verify critical real-time systems. After 25 years of research on PTAs, it is now well understood that any non-trivial problem studied is undecidable for general PTAs. We provide here a survey of decision and computation problems for PTAs. On the one hand, bounding time, bounding the number of parameters or the domain of the parameters does not (in general) lead to any decidability. On the other hand, restricting the number of clocks, the use of clocks (compared or not with the parameters), and the use of parameters (e. g., used only as upper or lower bounds) leads to decidability of some problems. We also put emphasis on open problems. We also discuss formalisms close to parametric timed automata (such as parametric hybrid automata or parametric interrupt timed automata), and we study tools dedicated to PTAs and their extensions.

Keywords

Decidability Decision problems Parametric timed model checking Parameter synthesis L/U-PTAs Hybrid automata 

Notes

Acknowledgements

This manuscript benefited from discussions with Didier Lime, Nicolas Markey, and Olivier H. Roux, as well as from the useful comments and suggestions of all three anonymous reviewers.

References

  1. 1.
    Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reachability testing for timed automata. In: Arvind, V., Ramanujam, R. (eds.) FSTTCS. LNCS, vol. 1530, pp. 245–256. Springer, New York (1998)Google Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Inf. Comput. 104(1), 2–34 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) Hybrid Systems 1992. LNCS, vol. 736, pp. 209–229. Springer, New York (1993)Google Scholar
  5. 5.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for “model measuring”. ACM Trans. Comput. Logic 2(3), 388–407 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC, pp. 592–601. ACM (1993)Google Scholar
  8. 8.
    Alur, R., Madhusudan, P.: Decision problems for timed automata: a survey. In: Bernardo, M., Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems, International School on Formal Methods for the Design of Computer, Communication and Software Systems, SFM-RT 2004, Bertinoro, Italy, September 13–18, 2004, Revised Lectures. LNCS, vol. 3185, pp. 1–24. Springer, New York (2004)Google Scholar
  9. 9.
    André, É.: Parametric deadlock-freeness checking timed automata. In: Sampaio, A.C.A., Wang, F. (eds.) ICTAC. LNCS, vol. 9965, pp. 469–478. Springer, New York (2016)Google Scholar
  10. 10.
    André, É.: What’s decidable about parametric timed automata? In: Artho, C., Ölveczky, P.C. (eds.) FTSCS. Communications in Computer and Information Science, vol. 596, pp. 1–17. Springer, New York (2016)Google Scholar
  11. 11.
    André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for parametric timed automata. IJFCS 20(5), 819–836 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM. LNCS, vol. 7436, pp. 33–36. Springer, New York (2012)Google Scholar
  13. 13.
    André, É., Lime, D.: Liveness in L/U-parametric timed automata. In: Legay, A., Schneider, K. (eds.) ACSD, pp. 9–18. IEEE, New York (2017)Google Scholar
  14. 14.
    André, É., Lime, D., Markey, N.: Language preservation problems in parametric timed automata (journal version). Technical report (2016), submittedGoogle Scholar
  15. 15.
    André, É., Lime, D., Roux, O.H.: Integer-complete synthesis for bounded parametric timed automata. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP. LNCS, vol. 9058. Springer, New York (2015)Google Scholar
  16. 16.
    André, É., Lime, D., Roux, O.H.: Decision problems for parametric timed automata. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM (2016), to appearGoogle Scholar
  17. 17.
    André, É., Lime, D., Roux, O.H.: On the expressiveness of parametric timed automata. In: Fränzle, M., Markey, N. (eds.) FORMATS (2016), to appearGoogle Scholar
  18. 18.
    André, É., Lin, S.W.: Learning-based compositional parameter synthesis for event-recording automata. In: Bouajjani, A., Alexandra, S. (eds.) FORTE. LNCS, vol. 10321, pp. 17–32. Springer, New York (2017)Google Scholar
  19. 19.
    André, É., Liu, Y., Sun, J., Dong, J.S.: Parameter synthesis for hierarchical concurrent real-time systems. In: Perseil, I., Pouzet, M., Breitman, K. (eds.) ICECCS, pp. 253–262. IEEE Computer Society, Silver Spring (2012)Google Scholar
  20. 20.
    André, É., Liu, Y., Sun, J., Dong, J.S., Lin, S.W.: PSyHCoS: parameter synthesis for hierarchical concurrent real-time systems. In: Sharygina, N., Veith, H. (eds.) CAV. LNCS, vol. 8044, pp. 984–989. Springer, New York (2013)Google Scholar
  21. 21.
    André, É., Markey, N.: Language preservation problems in parametric timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS. LNCS, vol. 9268, pp. 27–43. Springer, New York (2015)Google Scholar
  22. 22.
    André, É., Nguyen, H.G., Petrucci, L., Sun, J.: Parametric model checking timed automata under non-Zenoness assumption. In: Barrett, C., Kahsai, T. (eds.) NFM. Lecture Notes in Computer Science, vol. 10227, pp. 35–51. Springer, New York (2017)Google Scholar
  23. 23.
    Asarin, E., Mysore, V., Pnueli, A., Schneider, G.: Low dimensional hybrid systems—decidable, undecidable, don’t know. Inf. Comput. 211, 138–159 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Aştefănoaei, L., Bensalem, S., Bozga, M., Cheng, C., Ruess, H.: Compositional parameter synthesis. In: Fitzgerald, J.S., Heitmeyer, C.L., Gnesi, S., Philippou, A. (eds.) Proceedings of the 21st International Symposium on Formal Methods (FM 2016). Lecture Notes in Computer Science, vol. 9995, pp. 60–68 (2016)Google Scholar
  25. 25.
    Bagnara, R., Hill, P.M., Zaffanella, E.: The Parma Polyhedra Library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP, Part II. LNCS, vol. 9135, pp. 69–81. Springer, New York (2015)Google Scholar
  27. 27.
    Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of the expressiveness of timed automata and time Petri nets. In: Pettersson, P., Yi, W. (eds.) FORMATS. LNCS, vol. 3829, pp. 211–225. Springer, New York (2005)Google Scholar
  28. 28.
    Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: The expressive power of time Petri nets. Theor. Comput. Sci. 474, 1–20 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Bérard, B., Haddad, S., Jovanovic, A., Lime, D.: Interrupt timed automata with auxiliary clocks and parameters. Fundamenta Informormatica 143(3–4), 235–259 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Bérard, B., Haddad, S., Picaronny, C., Din, M.S.E., Sassolas, M.: Polynomial interrupt timed automata. In: Bojanczyk, M., Lasota, S., Potapov, I. (eds.) RP. LNCS, vol. 9328, pp. 20–32. Springer, New York (2015)Google Scholar
  31. 31.
    Bérard, B., Haddad, S., Sassolas, M.: Interrupt timed automata: verification and expressiveness. Form. Methods Syst. Des. 40(1), 41–87 (2012)CrossRefzbMATHGoogle Scholar
  32. 32.
    Bouyer, P., Markey, N., Sankur, O.: Robustness in timed automata. In: Abdulla, P.A., Potapov, I. (eds.) RP. LNCS, vol. 8169, pp. 1–18. Springer (2013), invited paperGoogle Scholar
  33. 33.
    Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric timed automata. Form. Methods Syst. Des. 35(2), 121–151 (2009)CrossRefzbMATHGoogle Scholar
  34. 34.
    Brihaye, T., Doyen, L., Geeraerts, G., Ouaknine, J., Raskin, J., Worrell, J.: Time-bounded reachability for monotonic hybrid automata: complexity and fixed points. In: Hung, D.V., Ogawa, M. (eds.) ATVA. LNCS, vol. 8172, pp. 55–70. Springer, New York (2013)Google Scholar
  35. 35.
    Brihaye, T., Michaux, C., Rivière, C., Troestler, C.: On O-minimal hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC. LNCS, vol. 2993, pp. 219–233. Springer, New York (2004)Google Scholar
  36. 36.
    Bruyère, V., Raskin, J.F.: Real-time model-checking: parameters everywhere. Log. Methods Comput. Sci. 3(1:7), 1–30 (2007)Google Scholar
  37. 37.
    Bundala, D., Ouaknine, J.: Advances in parametric real-time reasoning. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS. LNCS, vol. 8634, pp. 123–134. Springer, New York (2014)Google Scholar
  38. 38.
    Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Palamidessi, C. (ed.) CONCUR. LNCS, vol. 1877, pp. 138–152. Springer, New York (2000)Google Scholar
  39. 39.
    Cassez, F., Roux, O.H.: Structural translation from time Petri nets to timed automata. J. Syst. Softw. 79(10), 1456–1468 (2006)CrossRefzbMATHGoogle Scholar
  40. 40.
    Chevallier, R., Encrenaz-Tiphène, E., Fribourg, L., Xu, W.: Timed verification of the generic architecture of a memory circuit using parametric timed automata. Form. Methods Syst. Des. 34(1), 59–81 (2009)CrossRefzbMATHGoogle Scholar
  41. 41.
    Di Giampaolo, B., La Torre, S., Napoli, M.: Parametric metric interval temporal logic. Theor. Comput. Sci. 564, 131–148 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett. 102(5), 208–213 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Fanchon, L., Jacquemard, F.: Formal timing analysis of mixed music scores. In: International Computer Music Conference (2013)Google Scholar
  44. 44.
    Fribourg, L., Lesens, D., Moro, P., Soulat, R.: Robustness analysis for scheduling problems using the inverse method. TIME, pp. 73–80. IEEE Computer Society Press, Silver Spring (2012)Google Scholar
  45. 45.
    van Glabbeek, R.J.: The linear time-branching time spectrum (extended abstract). In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR. LNCS, vol. 458, pp. 278–297. Springer, New York (1990)Google Scholar
  46. 46.
    Henzinger, T.A.: The theory of hybrid automata. In: Vardi, M.Y., Clarke, E.M. (eds.) LICS. pp. 278–292. IEEE Computer Society, Silver Spring (1996)Google Scholar
  47. 47.
    Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: a model checker for hybrid systems. Softw. Tools Technol. Transf. 1, 110–122 (1997)CrossRefzbMATHGoogle Scholar
  48. 48.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Henzinger, T.A., Kopke, P.W., Wong-Toi, H.: The expressive power of clocks. In: Fülöp, Z., Gécseg, F. (eds.) ICALP. LNCS, vol. 944, pp. 417–428. Springer, New York (1995)Google Scholar
  50. 50.
    Henzinger, T.A., Nicollin, X., Sifakis, J., Yovine, S.: Symbolic model checking for real-time systems. Inf. Comput. 111(2), 193–244 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Hoare, C.: Communicating sequential processes. Commun. ACM 21, 666–677 (1978)CrossRefzbMATHGoogle Scholar
  52. 52.
    Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model checking of timed automata. JLAP 52–53, 183–220 (2002)MathSciNetzbMATHGoogle Scholar
  53. 53.
    Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed automata. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015)CrossRefzbMATHGoogle Scholar
  54. 54.
    Jovanović, A.: Parametric verification of timed systems. Ph.D. thesis, École Centrale Nantes, France (2013)Google Scholar
  55. 55.
    Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata. ToPNoC 5, 141–159 (2012)zbMATHGoogle Scholar
  56. 56.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Syst. 2(4), 255–299 (1990)CrossRefGoogle Scholar
  57. 57.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools Technol. Transf. 1(1–2), 134–152 (1997)CrossRefzbMATHGoogle Scholar
  58. 58.
    Lime, D., Roux, O.H., Seidner, C., Traonouez, L.M.: Romeo: a parametric model-checker for Petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.) TACAS. LNCS, vol. 5505, pp. 54–57. Springer, New York (2009)Google Scholar
  59. 59.
    Markey, N.: Robustness in real-time systems. In: Bate, I., Passerone, R. (eds.) SIES, pp. 28–34. IEEE Computer Society Press (2011)Google Scholar
  60. 60.
    Merlin, P.M.: A study of the recoverability of computing systems. Ph.D. thesis, University of California, Irvine, CA, USA (1974)Google Scholar
  61. 61.
    Miller, J.S.: Decidability and complexity results for timed automata and semi-linear hybrid automata. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC. LNCS, vol. 1790, pp. 296–309. Springer, New York (2000)Google Scholar
  62. 62.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc, Englewood Cliffs, NJ (1967)zbMATHGoogle Scholar
  63. 63.
    Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over finite words. Log. Methods Comput. Sci. 3(1), 1–27 (2007)Google Scholar
  64. 64.
    Ouaknine, J., Worrell, J.: Towards a theory of time-bounded verification. In: Abramsky, S., Gavoille, C., Kirchner, C., auf der Heide, F.M., Spirakis, P.G. (eds.) ICALP Part II. Lecture Notes in Computer Science, vol. 6199, pp. 22–37. Springer, New York (2010)Google Scholar
  65. 65.
    Quaas, K.: MTL-model checking of one-clock parametric timed automata is undecidable. In: André, É., Frehse, G. (eds.) SynCoP. EPTCS, vol. 145, pp. 5–17 Open Publishing Association, Waterloo, Australia (2014)Google Scholar
  66. 66.
    Srba, J.: Comparing the expressiveness of timed automata and timed extensions of Petri nets. In: Cassez, F., Jard, C. (eds.) FORMATS. LNCS, vol. 5215, pp. 15–32. Springer, New York (2008)Google Scholar
  67. 67.
    Sun, J., Liu, Y., Dong, J.S., Liu, Y., Shi, L., André, É.: Modeling and verifying hierarchical real-time systems using stateful timed CSP. ACM Trans. Softw. Eng. Methodol. 22(1), 1–29 (2013)CrossRefGoogle Scholar
  68. 68.
    Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under fairness. In: Bouajjani, A., Maler, O. (eds.) CAV. LNCS, vol. 5643, pp. 709–714. Springer, New York (2009)Google Scholar
  69. 69.
    Traonouez, L.M., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch Petri nets. J. Univers. Comput. Sci. 15(17), 3273–3304 (2009)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Université Paris 13LIPN, CNRS, UMR 7030VilletaneuseFrance

Personalised recommendations