Efficient family-based model checking via variability abstractions

  • Aleksandar S. Dimovski
  • Ahmad Salim Al-Sibahi
  • Claus Brabrand
  • Andrzej Wąsowski
Regular Paper


Many software systems are variational: they can be configured to meet diverse sets of requirements. They can produce a (potentially huge) number of related systems, known as products or variants, by systematically reusing common parts. For variational models (variational systems or families of related systems), specialized family-based model checking algorithms allow efficient verification of multiple variants, simultaneously, in a single run. These algorithms, implemented in a tool \(\overline{\text {SNIP}}\), scale much better than “the brute force” approach, where all individual systems are verified using a single-system model checker, one-by-one. Nevertheless, their computational cost still greatly depends on the number of features and variants. For variational models with a large number of features and variants, the family-based model checking may be too costly or even infeasible. In this work, we address two key problems of family-based model checking. First, we improve scalability by introducing abstractions that simplify variability. Second, we reduce the burden of maintaining specialized family-based model checkers, by showing how the presented variability abstractions can be used to model check variational models using the standard version of (single-system) SPIN. The variability abstractions are first defined as Galois connections on semantic domains. We then show how to use them for defining abstract family-based model checking, where a variability model is replaced with an abstract version of it, which preserves the satisfaction of LTL properties. Moreover, given an abstraction, we define a syntactic source-to-source transformation on high-level modeling languages that describe variational models, such that the model checking of the transformed high-level variational model coincides with the abstract model checking of the concrete high-level variational model. This allows the use of SPIN with all its accumulated optimizations for efficient verification of variational models without any knowledge about variability. We have implemented the transformations in a prototype tool, and we illustrate the practicality of this method in several case studies.


Software product lines Variability abstractions Abstract model checking Features 


  1. 1.
    Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-oriented software product lines—concepts and implementation. Springer (2013)Google Scholar
  2. 2.
    Apel, S., Speidel, H., Wendler, P., von Rhein, A., Beyer, D.: Detection of feature interactions using feature-aware verification. In: 26th IEEE/ACM international conference on automated software engineering (ASE 2011), pp. 372–375 (2011)Google Scholar
  3. 3.
    Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press (2008)Google Scholar
  4. 4.
    Belder, T., ter Beek, M.H., de Vink, E.P.: Coherent branching feature bisimulation. In: Proceedings 6th workshop on formal methods and analysis in SPL engineering, FMSPLE 2015, EPTCS, vol. 182, pp.14–30 (2015)Google Scholar
  5. 5.
    Bodden, E., Tolêdo, T., Ribeiro, M., Brabrand, C., Borba, P., Mezini, M.: Spl\({}^{\text{lift}}\): statically analyzing software product lines in minutes instead of years. In: ACM SIGPLAN Conference on PLDI ’13, pp. 355–364 (2013)Google Scholar
  6. 6.
    Brabrand, C., Ribeiro, M., Tolêdo, T., Winther, J., Borba, P.: Intraprocedural dataflow analysis for software product lines. Trans. Aspect Oriented Soft. Dev. 10, 73–108 (2013)Google Scholar
  7. 7.
    Chen, S., Erwig, M., Walkingshaw, E.: An error-tolerant type system for variational lambda calculus. In: ACM SIGPLAN international conference on functional programming, ICFP’12, pp. 29–40 (2012)Google Scholar
  8. 8.
    Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: a new symbolic model checker. STTT 2(4), 410–425 (2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    Clarke, Edmund M., Grumberg, Orna, Long, David E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)CrossRefGoogle Scholar
  10. 10.
    Classen, A., Boucher, Q., Heymans, P.: A text-based approach to feature modelling: syntax and semantics of TVL. Sci. Comput. Program. 76(12), 1130–1143 (2011)CrossRefGoogle Scholar
  11. 11.
    Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.-Y.: model checking software product lines with SNIP. STTT 14(5), 589–612 (2012)CrossRefGoogle Scholar
  12. 12.
    Classen, A., Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A., Raskin, J.-F.: Featured transition systems: foundations for verifying variability-intensive systems and their application to LTL model checking. IEEE Trans. Software Eng. 39(8), 1069–1089 (2013)CrossRefGoogle Scholar
  13. 13.
    Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A.: Symbolic model checking of software product lines. In: Proceedings of the 33rd international conference on software engineering, ICSE 2011, pp. 321–330 (2011)Google Scholar
  14. 14.
    Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin, J.-F.: Model checking lots of systems: efficient verification of temporal properties in software product lines. In: Proceedings of the 32nd ACM/IEEE international conference on software engineering—Volume 1, ICSE 2010, pp. 335–344 (2010)Google Scholar
  15. 15.
    Clements, P., Northrop, L.: Software product lines: practices and patterns. Addison-Wesley (2001)Google Scholar
  16. 16.
    Cordy, M., Classen, A., Perrouin, G., Schobbens, P.-Y., Heymans, P., Legay, A.: Simulation-based abstractions for software product-line model checking. In: Proceedings of the 34th international conference on software engineering, ICSE 2012, pp. 672–682 (2012)Google Scholar
  17. 17.
    Cordy, M., Heymans, P., Legay, A., Schobbens, P.-Y., Dawagne, B., Leucker, M.: Counterexample guided abstraction refinement of product-line behavioural models. In: Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering, (FSE-22), pp. 190–201 (2014)Google Scholar
  18. 18.
    Cousot, P,: The calculational design of a generic abstract interpreter. In: Broy, M., Steinbrüggen, R. (eds.) Calculational system design. NATO ASI Series F. IOS Press, Amsterdam (1999)Google Scholar
  19. 19.
    Czarnecki, K., Antkiewicz, M.: Mapping features to models: a template approach based on superimposed variants. In: Generative programming and component engineering, 4th Int. Conf., GPCE 2005, LNCS, vol. 3676, pp. 422–437 (2005)Google Scholar
  20. 20.
    Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. ACM Trans. Program. Lang. Syst. 19(2), 253–291 (1997)CrossRefGoogle Scholar
  21. 21.
    Dimovski, Aleksandar S.: Program verification using symbolic game semantics. Theor. Comput. Sci. 560, 364–379 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Dimovski, A.S.: Symbolic game semantics for model checking program families. In: Model Checking Software—23nd International Symposium, SPIN 2016, Proceedings, LNCS, vol. 9641, pp. 19–37. Springer (2016)Google Scholar
  23. 23.
    Dimovski, A.S., Al-Sibahi, A.S., Brabrand, C., Wasowski, A.: Family-based model checking without a family-based model checker. In: Model checking software—22nd International Symposium, SPIN 2015, Proceedings, LNCS, vol. 9232, pp. 282–299. Springer (2015)Google Scholar
  24. 24.
    Dimovski, A.S., Brabrand, C., Wasowski, A.: Variability abstractions: trading precision for speed in family-based analyses. In: 29th European conference on object-oriented programming, ECOOP 2015, LIPIcs, vol. 37, pp. 247–270. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  25. 25.
    Dimovski, A.S., Brabrand, C., Wasowski, A.: Variability abstractions: trading precision for speed in family-based analyses (extended version). CoRR, abs/1503.04608 (2015)Google Scholar
  26. 26.
    Fantechi, A., Gnesi, S.: A behavioural model for product families. In: Proceedings of the 6th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT International Symposium on Foundations of Software Engineering, 2007, pp. 521–524. ACM (2007)Google Scholar
  27. 27.
    Gallardo, M., Martínez, J., Merino, P., Pimentel, E.: \(\alpha \)spin: a tool for abstract model checking. STTT 5(2–3), 165–184 (2004)CrossRefGoogle Scholar
  28. 28.
    Gallardo, M., Merino, P., Pimentel, E.: Refinement of LTL formulas for abstract model checking. In: Static analysis, 9th international symposium, SAS 2002, Proceedings, LNCS, vol. 2477, pp. 395–410. Springer (2002)Google Scholar
  29. 29.
    Gruler, A., Leucker, M., Scheidemann, K.D.: Modeling and model checking software product lines. In: Formal methods for open object-based distributed systems, 10th IFIP WG 6.1 International Conference, FMOODS 2008, Proceedings, LNCS, vol. 5051, pp. 113–131. Springer (2008)Google Scholar
  30. 30.
    Holzmann, G.J.: The SPIN Model Checker—primer and reference manual. Addison-Wesley (2004)Google Scholar
  31. 31.
    Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Spencer Peterson, A.: Feature-oriented domain analysis (FODA) feasibility study. Technical report, Carnegie-Mellon University Software Engineering Institute (1990)Google Scholar
  32. 32.
    Kästner, C., Apel, S., Thüm, T., Saake, G.: Type checking annotation-based product lines. ACM Trans. Softw. Eng. Methodol. 21(3), 14 (2012)CrossRefGoogle Scholar
  33. 33.
    Kästner, C., Giarrusso, P.G., Rendel, T., Erdweg, S., Ostermann, K., Berger, T.: Variability-aware parsing in the presence of lexical macros and conditional compilation. In: Proceedings of the 26th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2011, part of SPLASH 2011, pp. 805–824 (2011)Google Scholar
  34. 34.
    Kramer, J., Magee, J., Sloman, M., Lister, A.: Conic: An integrated approach to distributed computer control systems. IEE Proc. 130(1), 1–10 (1983)CrossRefGoogle Scholar
  35. 35.
    Lauenroth, K., Pohl, K., Toehning, S.: Model checking of domain artifacts in product line engineering. In: ASE 2009, 24th IEEE/ACM International Conference on Automated Software Engineering, 2009, pp. 269–280. IEEE Computer Society (2009)Google Scholar
  36. 36.
    Lochau, M., Mennicke, S., Baller, H., Ribbeck, L.: Incremental model checking of delta-oriented software product lines. J. Log. Algebraic Methods Program. 85(1), 245–267 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Loiseaux, C., Graf, S., Sifakis, J., Bouajjani, A., Bensalem, S.: Property preserving abstractions for the verification of concurrent systems. Formal Methods Syst. Des. 6(1), 11–44 (1995)CrossRefzbMATHGoogle Scholar
  38. 38.
    McMillan, K.L.: Applications of craig interpolants in model checking. In: Tools and Algorithms for the Construction and Analysis of Systems, 11th International Conference, TACAS 2005, Proceedings, LNCS, vol. 3440, pp. 1–12. Springer (2005)Google Scholar
  39. 39.
    Midtgaard, J., Dimovski, A.S., Brabrand, C., Wasowski, A.: Systematic derivation of correct variability-aware program analyses. Sci. Comput. Program. 105, 145–170 (2015)CrossRefGoogle Scholar
  40. 40.
    Plath, M., Ryan, M.: Feature integration using a feature construct. Sci. Comput. Program. 41(1), 53–84 (2001)CrossRefzbMATHGoogle Scholar
  41. 41.
    Post, H., Sinz, C.: Configuration lifting: verification meets software configuration. In: 23rd IEEE/ACM international conference on automated software engineering (ASE 2008), pp. 347–350 (2008)Google Scholar
  42. 42.
    ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Using FMC for family-based analysis of software product lines. In: Proceedings of the 19th international conference on software product line, SPLC 2015, pp. 432–439. ACM (2015)Google Scholar
  43. 43.
    ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Modelling and analysing variability in product families: model checking of modal transition systems with variability constraints. J. Log. Algebraic Methods Program. 85(2), 287–315 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: A classification and survey of analysis strategies for software product lines. ACM Comput. Surv. 47(1), 6 (2014)CrossRefGoogle Scholar
  45. 45.
    Thüm, T., Schaefer, I., Hentschel, M., Apel, S.: Family-based deductive verification of software product lines. In: Generative programming and component engineering, GPCE’12, pp. 11–20. ACM (2012)Google Scholar
  46. 46.
    Thüm, T., Winkelmann, T., Schröter, R., Hentschel, M., Krüger, S.: Variability hiding in contracts for dependent software product lines. In: Proceedings of the tenth international workshop on variability modelling of software-intensive systems, 2016, pp. 97–104. ACM (2016)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Aleksandar S. Dimovski
    • 1
  • Ahmad Salim Al-Sibahi
    • 1
  • Claus Brabrand
    • 1
  • Andrzej Wąsowski
    • 1
  1. 1.IT University of CopenhagenCopenhagenDenmark

Personalised recommendations