Efficient model-checking of weighted CTL with upper-bound constraints

  • Jonas Finnemann Jensen
  • Kim Guldstrand Larsen
  • Jiří SrbaEmail author
  • Lars Kaerlund Oestergaard
SPIN 2013


We present a symbolic extension of dependency graphs by Liu and Smolka in to model-check weighted Kripke structures against the computation tree logic with upper-bound weight constraints. Our extension introduces a new type of edges into dependency graphs and lifts the computation of fixed-points from boolean domain to nonnegative integers to cope with the weights. We present both global and local algorithms for the fixed-point computation on symbolic dependency graphs and argue for the advantages of our approach compared to the direct encoding of the model-checking problem into dependency graphs. We implement all algorithms in a publicly available tool and evaluate them on several experiments. The principal conclusion is that our local algorithm is the most efficient one with an order of magnitude improvement for model checking problems with a high number of “witnesses”.


Weighted CTL Weighted automata Model checking On-the-fly methods 



We thank the anonymous reviewers for their useful comments and suggestions. The research leading to these results has received funding from the EU Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 601148 (CASSTING).


  1. 1.
    Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Comput. 104(1), 2–34 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M. (ed.) ICALP, vol. 443 of LNCS, pp. 322–335. Springer, New York (1990)Google Scholar
  3. 3.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM 43(1), 116–146 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Proceedings of the 4th International Workshop on Hybrid Systems: Computation and Control (HSCC’01), vol. 2034 of LNCS, pp. 49–62. Springer, New York (2001)Google Scholar
  5. 5.
    Andersen, H.R.: Model checking and boolean graphs. Theor. Comput. Sci. 126(1), 3–30 (1994)CrossRefzbMATHGoogle Scholar
  6. 6.
    Kasahara Laboratory at Waseda University. Standard task graph set.
  7. 7.
    Bartlett, K.A., Scantlebury, R.A., Wilkinson, P.T.: A note on reliable full-duplex transmission over half-duplex links. Commun. ACM 12(5), 260–261 (1969)CrossRefGoogle Scholar
  8. 8.
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In: Proceedings of the 4th International Workshop on Hybrid Systems: Computation and Control (HSCC’01), vol. 2034 of LNCS, pp. 147–161. Springer, New York (2001)Google Scholar
  9. 9.
    Bouyer, P., Larsen, K.G., Markey, N.: Model checking one-clock priced timed automata. Log. Methods Comput. Sci. 4(2) (2008)Google Scholar
  10. 10.
    Brihaye, T., Bruyère, V., Raskin, J.-F.: Model-checking for weighted timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT, vol. 3253 of LNCS, pp. 277–292. Springer, New York (2004)Google Scholar
  11. 11.
    Buchholz, P., Kemper, P.: Model checking for a class of weighted automata. Discret. Event Dyn. Syst. 20, 103–137 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Proceedings of the 16th International Conference on Concurrency Theory CONCUR’05, vol. 3653 of LNCS, pp. 66–80. Springer, New York (2005)Google Scholar
  13. 13.
    Chang, E., Roberts, R.: An improved algorithm for decentralized extrema-finding in circular configurations of processes. Commun. ACM 22(5), 281–283 (1979)CrossRefzbMATHGoogle Scholar
  14. 14.
    Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380(1–2), 69–86 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn. Springer Publishing Company, Incorporated (2009)CrossRefzbMATHGoogle Scholar
  16. 16.
    Knaster, B.: Un théorème sur les fonctions d’ensembles. Ann. de la Société Polonaise de Mathématique 6, 133–134 (1928)zbMATHGoogle Scholar
  17. 17.
    Kwok, Y.-K., Ahmad, I.: Benchmarking and comparison of the task graph scheduling algorithms. J. Parallel Distrib. Comput. 59(3), 381–422 (1999)CrossRefzbMATHGoogle Scholar
  18. 18.
    Laroussinie, F., Markey, N., Oreiby, G.: Model-checking timed ATL for durational concurrent game structures. In: Asarin, E., Bouyer, P. (eds.) FORMATS, vol. 4202 of LNCS, pp. 245–259. Springer, New York (2006)Google Scholar
  19. 19.
    Liu, X., Ramakrishnan, C.R., Smolka, S.A.: Fully local and efficient evaluation of alternating fixed points. In: Tools and Algorithms for the Construction and Analysis of Systems. vol. 1384 of LNCS, pp. 5–19. Springer, Berlin (1998)Google Scholar
  20. 20.
    Liu, X., Smolka, S.A.: Simple linear-time algorithms for minimal fixed points (extended abstract). In: Proceedings of the 25th International Colloquium on Automata, Languages and Programming (ICALP’98), vol. 1443 of LNCS, pp. 53–66. Springer, New York (1998)Google Scholar
  21. 21.
    Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, New York (1990)zbMATHGoogle Scholar
  22. 22.
    Milner, R.: A calculus of communicating systems. In: LNCS, vol. 92 (1980)Google Scholar
  23. 23.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5(2), 285–309 (1955)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jonas Finnemann Jensen
    • 1
  • Kim Guldstrand Larsen
    • 1
  • Jiří Srba
    • 1
    Email author
  • Lars Kaerlund Oestergaard
    • 1
  1. 1.Department of Computer ScienceAalborg UniversityAalborgDenmark

Personalised recommendations