Statistical model checking for biological applications

SMC

Abstract

In this paper, we survey recent work on the use of statistical model checking techniques for biological applications. We begin with an overview of the basic modelling techniques for biochemical reactions and their corresponding stochastic simulation algorithm—the Gillespie algorithm. We continue by giving a brief description of the relation between stochastic models and continuous (ordinary differential equation) models. Next, we present a literature survey, divided into two general areas. In the first area, we focus on works addressing verification of biological models, while in the second area we focus on papers tackling the parameter synthesis problem. We conclude with some open problems and directions for further research.

Keywords

Verification Systems biology Synthetic biology  Parameter estimation 

References

  1. 1.
    Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.: Model-checking algorithms for continuous-time Markov chains. IEEE Trans. Softw. Eng. 29(6), 524–541 (2003)CrossRefGoogle Scholar
  2. 2.
    Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: COSMOS: a statistical model checker for the hybrid automata stochastic logic. In: QEST, pp. 143–144 (2011)Google Scholar
  3. 3.
    Ballarini, P., Mäkelä, J., Ribeiro, A.S.: Expressive statistical model checking of genetic networks with delayed stochastic dynamics. In: CMSB, volume 7605 of LNCS, pp. 29–48 (2012)Google Scholar
  4. 4.
    Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of temporal properties for stochastic models. In: HSB, volume 125 of EPTCS, pp. 3–19 (2013)Google Scholar
  5. 5.
    Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: a flexible, distributable statistical model checking library. In: QEST, volume 8054 of LNCS, pp. 160–164 (2013)Google Scholar
  6. 6.
    Brim, L., Česka, M., Šafránek, D.: Model checking of biological systems. In: SFM, volume 7938 of LNCS, pp. 63–112 (2013)Google Scholar
  7. 7.
    Bulychev, P.E., David, A., Larsen, K.G., Mikucionis, M., Poulsen, D.B., Legay, A., Wang, Z.: UPPAAL-SMC: statistical model checking for priced timed automata. In: QAPL, volume 85 of EPTCS, pp. 1–16 (2012)Google Scholar
  8. 8.
    Calzone, L., Chabrier-Rivier, N., Fages, F., Soliman, S.: Machine learning biochemical networks from temporal logic properties. In: Transactions on Computational Systems Biology, volume 4220 of LNCS, pp. 68–94 (2006)Google Scholar
  9. 9.
    Clarke, E.M., Faeder, J.R., Langmead, C.J., Harris, L.A., Jha, S.K., Legay, A.: Statistical model checking in BioLab: applications to the automated analysis of T-cell receptor signaling pathway. In: CMSB, volume 5307 of LNCS, pp. 231–250 (2008)Google Scholar
  10. 10.
    David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., Sedwards, S.: Runtime verification of biological systems. In: ISoLA (1), volume 7609 of LNCS, pp. 388–404 (2012)Google Scholar
  11. 11.
    Donaldson, R., Gilbert, D.: A model checking approach to the parameter estimation of biochemical pathways. In: CMSB, volume 5307 of LNCS, pp. 269–287 (2008)Google Scholar
  12. 12.
    Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: CAV, volume 8044 of LNCS, pp. 264–279 (2013)Google Scholar
  13. 13.
    Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: LICS, pp. 305–314 (2012)Google Scholar
  14. 14.
    Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Gillespie, D.T.: A rigorous derivation of the chemical master equation. Phys. A 188, 404–425 (1992)CrossRefGoogle Scholar
  16. 16.
    Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys. 115(4), 1716–1733 (2001)CrossRefGoogle Scholar
  17. 17.
    Hucka, M., et al.: The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)CrossRefGoogle Scholar
  18. 18.
    Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A Bayesian approach to model checking biological systems. In: CMSB, volume 5688 of LNCS, pp. 218–234 (2009)Google Scholar
  19. 19.
    Jha, S.K., Dutta, R.G., Langmead, C.J., Jha, S., Sassano, E.: Synthesis of insulin pump controllers from safety specifications using Bayesian model validation. IJBRA 8(3/4), 263–285 (2012)CrossRefGoogle Scholar
  20. 20.
    Jha, S.K., Langmead, C.J.: Synthesis and infeasibility analysis for stochastic models of biochemical systems using statistical model checking and abstraction refinement. Theory Comput. Sci. 412(21), 2162–2187 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Jha, S.K., Langmead, C.J.: Exploring behaviors of stochastic differential equation models of biological systems using change of measures. BMC Bioinform. 13(S–5), S8 (2012) Google Scholar
  22. 22.
    Keating, S.M., Bornstein, B.J., Finney, A., Hucka, M.: SBMLToolbox: an SBML toolbox for MATLAB users. Bioinformatics 22(10), 1275–1277 (2006)Google Scholar
  23. 23.
    Kitano, H.: Biological robustness. Nat. Rev. Genet. 5(11), 826–837 (2004)Google Scholar
  24. 24.
    Koh, C.H., Palaniappan, S.K., Thiagarajan, P.S., Wong, L.: Improved statistical model checking methods for pathway analysis. BMC Bioinform. 13(S–17), S15 (2012)CrossRefGoogle Scholar
  25. 25.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real Time Syst. 2(4), 255–299 (1990)CrossRefGoogle Scholar
  26. 26.
    Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump Markov processes. J. Appl. Prob. 7(1), 49–58 (1970)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: CAV, volume 6806 of LNCS, pp. 585–591 (2011)Google Scholar
  28. 28.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1–2), 134–152 (1997)CrossRefMATHGoogle Scholar
  29. 29.
    Palaniappan, S.K., Gyori, B.M., Liu, B., Hsu, D., Thiagarajan, P.S.: Statistical model checking based calibration and analysis of bio-pathway models. In: CMSB, volume 8130 of LNCS, pp. 120–134 (2013)Google Scholar
  30. 30.
    Rathinam, M., Petzold, L.R., Cao, Y., Gillespie, D.T.: Stiffness in stochastic chemically reacting systems: the implicit tau-leaping method. J. Chem. Phys. 119(24), 12784–12794 (2003)CrossRefGoogle Scholar
  31. 31.
    Richardson, D.: Some undecidable problems involving elementary functions of a real variable. J. Symb. Log. 33(4), 514–520 (1968)CrossRefMATHGoogle Scholar
  32. 32.
    Sankaranarayanan, S., Fainekos, G.E.: Simulating insulin infusion pump risks by in-silico modeling of the insulin-glucose regulatory system. In: CMSB, volume 7605 of LNCS, pp. 322–341 (2012)Google Scholar
  33. 33.
    Schivo, S., Scholma, J., Wanders, B., Camacho, R.A U., van der Vet, P.E., Karperien, M., Langerak, R., van de Pol, J., Post, J.N.: Modelling biological pathway dynamics with timed automata. In: BIBE, pp. 447–453. IEEE Press, New York (2012)Google Scholar
  34. 34.
    Česka, M., Šafránek, D., Dražan, S., Brim, L.: Robustness analysis of stochastic biochemical systems. PLoS One 9(4): e94553 (2014)Google Scholar
  35. 35.
    Wald, A.: Sequential test of stastistical hypotheses. Ann. Math. Stat. 16(2), 117–186 (1945)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Wilkinson, D.J.: Stochastic modelling for systems biology, 2nd edn. CRC Press, Boca Raton (2011)Google Scholar
  37. 37.
    Younes, H.L.S.: Error control for probabilistic model checking. In: VMCAI, volume 3855 of LNCS, pp. 142–156 (2006)Google Scholar
  38. 38.
    Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: CAV, volume 2404 of LNCS, pp. 223–235 (2002)Google Scholar
  39. 39.
    Zhang, F., Yeddanapudi, M., Mosterman, P.: Zero-crossing location and detection algorithms for hybrid system simulation. IFAC World Congress, pp. 7967–7972 (2008)Google Scholar
  40. 40.
    Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to Simulink/Stateflow verification. In: HSCC, pp. 243–252 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Computing ScienceNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations