Advertisement

Schedulability of Herschel revisited using statistical model checking

  • Alexandre David
  • Kim G. Larsen
  • Axel LegayEmail author
  • Marius Mikučionis
AD-RV

Abstract

Schedulability analysis is a main concern for several embedded applications due to their safety-critical nature. The classical method of response time analysis provides an efficient technique used in industrial practice. However, the method is based on conservative assumptions related to execution and blocking times of tasks. Consequently, the method may falsely declare deadline violations that will never occur during execution. This paper is a continuation of previous work of the authors in applying extended timed automata model checking (using the tool UPPAAL) to obtain more exact schedulability analysis, here in the presence of non-deterministic computation times of tasks given by intervals [BCET,WCET]. Computation intervals with preemptive schedulers make the schedulability analysis of the resulting task model undecidable. Our contribution is to propose a combination of model checking techniques to obtain some guarantee on the (un)schedulability of the model even in the presence of undecidability. Two methods are considered: symbolic model checking and statistical model checking. Since the model uses stop-watches, the reachability problem becomes undecidable so we are using an over-approximation technique. We can safely conclude that the system is schedulable for varying values of BCET. For the cases where deadlines are violated, we use polyhedra to try to confirm the witnesses. Our alternative method to confirm non-schedulability uses statistical model-checking (SMC) to generate counter-examples that are always realizable. Another use of the SMC technique is to do performance analysis on schedulable configurations to obtain, e.g., expected response times. The methods are demonstrated on a complex satellite software system yielding new insights useful for the company.

Keywords

Statistical model checking Symbolic model checking Performance analysis Scheduling 

References

  1. 1.
    Ben-Abdallah, H., Choi, J.-Y., Clarke, D., Kim, Y.S., Lee, I., Xie, H.-L.: A process algebraic approach to the schedulability analysis of real-time systems. Real-Time Syst. 15, 189–219 (1998). doi: 10.1023/A:1008047130023 CrossRefGoogle Scholar
  2. 2.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science, vol. 1579, pp. 193–207. Springer, Berlin (1999)Google Scholar
  3. 3.
    Bulychev, P.E., David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Checking and distributing statistical model checking. NASA Formal Methods. Lecture Notes in Computer Science, vol. 7226, pp. 449–463. Springer, Berlin (2012)Google Scholar
  4. 4.
    Bradley, S., Henderson, W., Kendall, D.: Using timed automata for response time analysis of distributed real-time systems. In: Systems, 24th IFAC/IFIP Workshop on Real-Time Programming WRTP 99, pp. 143–148 (1999)Google Scholar
  5. 5.
    Bohnenkamp, H.C., Hermanns, H., Klaren, R., Mader, A., Usenko, Y.S.: Synthesis and stochastic assessment of schedules for lacquer production. In: First International Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings. pp. 28–37 (2004)Google Scholar
  6. 6.
    Brekling, A., Hansen, M.R., Madsen, J.: MoVES—a framework for modelling and verifying embedded systems. In: International Conference on Microelectronics (ICM), pp. 149–152 (2009)Google Scholar
  7. 7.
    Burns, A.: Preemptive priority based scheduling: an appropriate engineering approach. In: Principles of Real-Time Systems, pp. 225–248. Prentice Hall, Englewood Cliffs (1994)Google Scholar
  8. 8.
    Christensen, S., Kristensen, L., Mailund, T.: A sweep-line method for state space exploration. In: Tools and Algorithms for the Construction and Analysis of Systems. TACAS 2001, pp. 450–464. Springer, London (2001)Google Scholar
  9. 9.
    Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Palamidessi, C. (ed.) CONCUR. Lecture Notes in Computer Science, vol. 1877, pp. 138–152. Springer, Berlin (2000)Google Scholar
  10. 10.
    David, A., Illum, J., Larsen, K.G., Skou, A.: Model-Based Framework for Schedulability Analysis Using UPPAAL 4.1. In: Nicolescu, G., Mosterman, P.J. (eds.) Model-Based Design for Embedded Systems, pp. 93–119. CRC Press, Boca Raton (2010) Google Scholar
  11. 11.
    David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., Vliet, J.Van, Wang, Z.: Statistical model checking for networks of priced timed automata. FORMATS. LNCS, pp. 80–96. Springer, Berlin (2011)Google Scholar
  12. 12.
    David, A., Larsen, K.G., Legay, A., Wang, Z., Mikučionis, M.: Time for real statistical model-checking: Statistical model-checking for real-time systems. In: CAV, LNCS. Springer, Berlin (2011)Google Scholar
  13. 13.
    David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Schedulability of Herschel-Planck revisited using statistical model checking. ISoLA (2). LNCS, vol. 7610, pp. 293–307. Springer, Berlin (2012)Google Scholar
  14. 14.
    Fersman, E., Krčál, P., Pettersson, P., Yi, W.: Task automata: Schedulability, decidability and undecidability. Inf. Comput. 205(8), 1149–1172 (2007)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) Verification, Model Checking, and Abstract Interpretation. Lecture Notes in Computer Science, vol. 2937, pp. 73–84. Springer, Berlin (2004)CrossRefGoogle Scholar
  16. 16.
    Jeannet, B., Miné, A.: Apron: a library of numerical abstract domains for static analysis. In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification. Lecture Notes in Computer Science, vol. 5643, pp. 661–667. Springer, Berlin (2009)CrossRefGoogle Scholar
  17. 17.
    Joseph, M., Pandya, P.K.: Finding response times in a real-time system. Comput. J. 29(5), 390–395 (1986)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. In: Proc. of 6th Int. Conference on the Quantitative Evaluation of Systems (QEST), pp. 167–176. IEEE Computer Society (2009)Google Scholar
  19. 19.
    Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: RV, Lecture Notes in Computer Science, vol. 6418, pp. 122–135. Springer, Berlin (2010)Google Scholar
  20. 20.
    Mikučionis, M., Larsen, K.G., Rasmussen, J.I., Nielsen, B., Skou, A., Palm, S.U., Pedersen, J.S., Hougaard, P.: Schedulability analysis using Uppaal: Herschel-Planck case study. In: Margaria, T. (ed.) ISoLA 2010–4th International Symposium On Leveraging Applications of Formal Methods. Verification and Validation. Lecture Notes in Computer Science. Springer, Berlin (2010)Google Scholar
  21. 21.
    Rabih, D., Pekergin, N.: Statistical model checking using perfect simulation. In: Liu, Z., Ravn, A.P. (eds.) Automated Technology for Verification and Analysis. Lecture Notes in Computer Science, vol. 5799, pp. 120–134. Springer, Berlin (2009)CrossRefGoogle Scholar
  22. 22.
    Sokolsky, O., Lee, I., Clarke, D.: Schedulability analysis of AADL models. In: 20th International Parallel and Distributed Processing Symposium, 2006. IPDPS 2006, pp. 8 (2006)Google Scholar
  23. 23.
    Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box probabilistic systems. In CAV, LNCS 3114, pp. 202–215. Springer, Berlin (2004)Google Scholar
  24. 24.
    Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) Computer Aided Verification. Lecture Notes in Computer Science, vol. 2404, pp. 223–235. Springer, Berlin (2002)CrossRefGoogle Scholar
  25. 25.
    Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alexandre David
    • 1
  • Kim G. Larsen
    • 1
  • Axel Legay
    • 1
    • 2
    Email author
  • Marius Mikučionis
    • 1
  1. 1.Computer ScienceAalborg UniversityÅlborgDenmark
  2. 2.INRIA/IRISARennes CedexFrance

Personalised recommendations