Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Statistical model checking for biological systems

  • 506 Accesses

  • 15 Citations


Statistical Model Checking (SMC) is a highly scalable simulation-based verification approach for testing and estimating the probability that a stochastic system satisfies a given linear temporal property. The technique has been applied to (discrete and continuous time) Markov chains, stochastic timed automata and most recently hybrid systems using the tool Uppaal SMC. In this paper we enable the application of SMC to complex biological systems, by combining Uppaal SMC with ANIMO, a plugin of the tool Cytoscape used by biologists, as well as with SimBiology®, a plugin of Matlab to simulate reactions. ANIMO and SimBiology® are two domain specific tools that have their own user interfaces and formalisms specifically tailored towards the biology domain. However—though providing means for simulation—both tools lack the powerful analytic capabilities offered by SMC, which in previous work have proved very useful for identifying interesting properties of biological systems. Our aim is to offer the best of the two worlds: optimal domain specific interfaces and formalisms suited to biology combined with powerful SMC analysis techniques for stochastic and hybrid systems. This goal is obtained by developing translators from the XGMML and SBML formats used by Cytoscape and SimBiology® to stochastic and hybrid automata, allowing Uppaal SMC to be used as an efficient backend analysis tool, that we demonstrate can handle real-world biological systems by pitting it against the BioModels database. We present detailed analysis on two particular case-studies involving the ANIMO and SimBiology® tools.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. 1.


  2. 2.


  3. 3.


  4. 4.

    In fact the colouring of the nodes represent how large a fraction of each species is active.

  5. 5.


  6. 6.


  7. 7.

    They can be added to the CTMC model as well but this is not yet implemented.

  8. 8.

    The individual scaling or simulation steps are not reported here for brevity.

  9. 9.

    e.g. StateSpace approach is not applicable due to multiple species coupling.


  1. 1.

    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci 126(2), 183–235 (1994). doi:10.1016/0304-3975(94)90010-8

  2. 2.

    Barkai, N., Leibler, S.: Biological rhythms: circadian clocks limited by noise. Nature 403, 267–268 (2000)

  3. 3.

    Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical abstraction and model-checking of large heterogeneous systems. In: Hatcliff, J., Zucca, E. (eds.) Formal Techniques for Distributed Systems, vol. 6117 of Lecture Notes in Computer Science, pp. 32–46. Springer, Berlin (2010). ISBN: 978-3-642-13463-0. doi:10.1007/978-3-642-13464-74

  4. 4.

    Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. Lecture Notes in Computer Science, pp. 200–236 (2004)

  5. 5.

    Behrmann, Gerd, David, Alexandre, Larsen, Kim Guldstrand, Pettersson, Paul, Yi, Wang: Developing UPPAAL over 15 years. Softw. Pract. Exper 41(2), 133–142 (2011). doi:10.1002/spe.1006

  6. 6.

    Bergmann, F.T., Sauro, H.M.: Comparing simulation results of SBML capable simulators. Bioinformatics 24(17):1963–1965 (2008). doi:10.1093/bioinformatics/btn319. URL: http://bioinformatics.oxfordjournals.org/content/24/17/1963.full

  7. 7.

    Bulychev, P., David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Computing Nash Equilibrium in Wireless Ad Hoc Networks: A Simulation-Based Approach. In: Reich, J., Finkbeiner, B. (eds.) Second International Workshop on Interactions, Games and Protocols, vol. 78 of EPTCS, pp. 1–14 (2012). doi:10.4204/EPTCS.78

  8. 8.

    Bulychev, P.E., David, A., Larsen, K.G., Legay, A., Li, G., Poulsen, D.B.: Rewrite-Based Statistical Model Checking of WMTL. In: Qadeer S., Tasiran, S. (ed.) RV, vol. 7687 of Lecture Notes in Computer Science, pp. 260–275. Springer, Berlin (2012). ISBN: 978-3-642-35631-5-642-35632-2. doi:10.1007/978-3-642-35632-225

  9. 9.

    Bulychev, P.E., David, A., Larsen, K.G., Legay, A., Li, G., Poulsen, D.B., Stainer, A.: Monitor-Based Statistical Model Checking for Weighted Metric Temporal Logic. In: Bjørner, N., Voronkov, A. (eds.) LPAR, vol. 7180 of Lecture Notes in Computer Science, pp. 168–182. Springer, Berlin (2012). ISBN:978-3-642-28716-9. doi:10.1007/978-3-642-28717-615

  10. 10.

    David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., van Vliet, J., Wang, Z.: Statistical Model Checking for Networks of Priced Timed Automata. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS, vol. 6919 of Lecture Notes in Computer Science, pp. 80–96. Springer, Berlin (2011). ISBN:978-3-642-24309-7. doi:10.1007/978-3-642-24310-37

  11. 11.

    David, A., Du, D., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., Sedwards, S.: Statistical Model Checking for Stochastic Hybrid Systems. In: Bartocci, E., Bortolussi, L. (eds.) HSB, vol. 92 of EPTCS, pp. 122–136 (2012). doi:10.4204/EPTCS.92.9

  12. 12.

    David, A., Du, D., Larsen, K.G., Mikučionis, M., Skou, A.: An evaluation framework for energy aware buildings using statistical model checking. Sci. China Inform. Sci. 55:2694–2707, 2012. ISSN:1674–733X. doi:10.1007/s11432-012-4742-0. URL:http://dx.doi.org/10.1007/s11432-012-4742-0

  13. 13.

    David, A., Larsen, K.G., Legay, A., Mikučionis, M.: Schedulability of Herschel-Planck Revisited Using Statistical Model Checking. In: Margaria, T., Steffen, B. (eds.) ISoLA (2), vol. 7610 of Lecture Notes in Computer Science, pp. 293–307. Springer, Berlin (2012). ISBN:978-3-642-34031-4. doi:10.1007/978-3-642-34032-128

  14. 14.

    David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B., Sedwards, S.: Runtime Verification of Biological Systems. In: ISoLA (1), pp. 388–404 (2012). doi:10.1007/978-3-642-34026-029

  15. 15.

    Faeder, J.R., Blinov, M.L., Hlavacek, W.S.: Rule-based modeling of biochemical systems with BioNetGen. Syst. Biol. 500 (2009). doi:10.1007/978-1-59745-525-15

  16. 16.

    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81:2340–2361 (1977). doi:10.1021/j100540a008

  17. 17.

    Hilborn, R.C., Erwin, J.D.: Stochastic coherence in an oscillatory gene circuit model. J. Theor. Biol. 253(2):349–354 (2008). ISSN:0022–5193. doi:10.1016/j.jtbi.2008.03.012. URL:http://www.sciencedirect.com/science/article/pii/S0022519308001264

  18. 18.

    Jegourel, C., Legay, A., Sedwards, S.: A platform for high performance statistical model checking—PLASMA. In: Flanagan, C., König, B. (eds.) Tools and Algorithms for the Construction and Analysis of Systems, vol. 7214 of Lecture Notes in Computer Science, pp. 498–503. Springer, Berlin (2012). ISBN:978-3-642-28755-8. doi:10.1007/978-3-642-28756-537

  19. 19.

    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1—-2), 134–152 (1997). doi:10.1007/s100090050010

  20. 20.

    Legay, A., Delahaye, B., Bensalem, S.: Statistical Model Checking: An Overview. In: RV, vol. 6418 of Lecture Notes in Computer Science, pp. 122–135. Springer, Berlin (2010). doi:10.1007/978-3-642-16612-911

  21. 21.

    Schivo, S., Scholma, J., Wanders, B., Urquidi Camacho, R.A., van der Vet, P.E., Karperien, M., Langerak, R., van de Pol, J., Post, J.N.: Modelling biological pathway dynamics with Timed Automata. IEEE J. Biomed. Health Inform. PP(99):1–1 (2013). ISSN:2168–2194. doi:10.1109/JBHI.2013.2292880

  22. 22.

    Schivo, S., Scholma, J., Wanders, B., Urquidi C., Ricardo A., van der Vet, Paul E., Karperien, M., Langerak, R., van de Pol, J., Post, J.N.: Modelling biological pathway dynamics with Timed Automata. In: Proceedings of the 2012 IEEE 12th International Conference on Bioinformatics and Bioengineering (BIBE), pp. 447–453 (2012)

  23. 23.

    Sen, K., Viswanathan, M., Agha, G.: Statistical Model Checking of Black-Box Probabilistic Systems. In: CAV, LNCS 3114, pp. 202–215. Springer, Berlin (2004). doi:10.1007/978-3-540-27813-916

  24. 24.

    Shannon, P., Markiel, A., Ozier, O., Amin, N., Schwikowski, Benno, Ideker, Trey: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003). doi:10.1101/gr.1239303

  25. 25.

    Vilar, J.M.G., Kueh, H.Y., Barkai, N., Leibler, S.: Mechanisms of noise-resistance in genetic oscillators. Proc. Natl. Acad. Sci. 99(9): 5988–5992, 2002. doi:10.1073/pnas.092133899. URL http://www.pnas.org/content/99/9/5988.abstract

  26. 26.

    Younes, H.L.S., Simmons, R.G.: Probabilistic Verification of Discrete Event Systems Using Acceptance Sampling. In: Proceeding of 14th International Conference on Computer Aided Verification (CAV), LNCS 2404, pp. 223–235. Springer, Berlin (2002)

  27. 27.

    Younes, H.L.S.: Ymer: A Statistical Model Checker. In: Etessami, K., Rajamani, S.K. (eds.) Computer Aided Verification, vol. 3576 of Lecture Notes in Computer Science, pp. 429–433. Springer, Berlin (2005). ISBN:978-3-540-27231-1. doi:10.1007/1151398843

Download references


The authors of this paper are grateful for the detailed comments from the anonymous reviewers.

Author information

Correspondence to Axel Legay.

Additional information

Work is supported by the VKR Center of Excellence MT-LAB, EU Artemis project MBAT and by the Sino-Danish Basic Research Center IDEA4CPS, DNRF86-10.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

David, A., Larsen, K.G., Legay, A. et al. Statistical model checking for biological systems. Int J Softw Tools Technol Transfer 17, 351–367 (2015). https://doi.org/10.1007/s10009-014-0323-4

Download citation


  • Statistical model checking
  • Systems biology