A construction and minimization service for continuous probability distributions

  • Reza PulunganEmail author
  • Holger Hermanns
Regular Paper


The universe of acyclic continuous-time Markov chains can provide arbitrarily close approximations of any continuous probability distribution. We span this universe by a compositional construction calculus for acyclic phase-type distributions. The calculus draws its expressiveness from a single operator, yet the calculus is equipped with further convenient operators, namely convolution, maximum, and minimum. However, the size of the chains constructed in this way can grow rapidly. We therefore link our calculus to a compositional minimization algorithm that whenever applied almost surely yields a chain with the least possible size. The entire approach is available in the form of an easy-to-use web service. The paper describes the architecture of this service in detail and reports on experimental evidence demonstrating its usefulness.


Phase-type distributions Acyclic  Minimization Maximum Minimum Convolution Erlang 



We would like to thank the reviewers for their valuable and detailed comments and suggestions in improving this paper.


  1. 1.
    Aceto, L., Fokkink, W.J., Verhoef, C.: Handbook of process algebra, chapter structural operational semantics, pp. 197–292. Elsevier, Amsterdam (2001)Google Scholar
  2. 2.
    Bernardo, M., Gorrieri, R.: Extended Markovian process algebra. In: Montanari, U., Sassone, V. (eds.) CONCUR ’96, Concurrency Theory, 7th International Conference, Pisa, Italy, August 26–29, 1996. Proceedings, volume 1119 of Lecture Notes in Computer Science, pp. 315–330. Springer (1996)Google Scholar
  3. 3.
    Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LOTOS. Comput. Netw. 14, 25–59 (1987)Google Scholar
  4. 4.
    Boudol, G., Castellani, I.: A non-interleaving semantics for CCS based on proved transitions. Fundamenta Informaticae. 11, 433–452 (1988)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31, 59–75 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Cardelli, L., Mardare, R.: The measurable space of stochastic processes. In: 2010 Seventh International Conference on the Quantitative Evaluation of Systems (QEST), pp. 171–180 (2010)Google Scholar
  7. 7.
    Cox, D.R.: A use of complex probabilities in the theory of stochastic processes. Proc. Camb. Philos. Soc. 51(2), 313–319 (1955)CrossRefzbMATHGoogle Scholar
  8. 8.
    Cumani, A.: Canonical representation of homogeneous Markov processes modelling failure time distributions. Microelectron. Reliab. 2(3), 583–602 (1982)CrossRefMathSciNetGoogle Scholar
  9. 9.
    David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., van Vliet, J., Wang, Z.: Stochastic semantics and statistical model checking for networks of priced timed automata. CoRR, abs/1106.3961 (2011)Google Scholar
  10. 10.
    Dugan, J.B., Doyle, S.A.: New results in fault-tree analysis. In: Proceedings annual reliability and maintainability symposium, pp. 1–23, Las Vegas (1996)Google Scholar
  11. 11.
    He, Q.-M., Zhang, H.: Spectral polynomial algorithms for computing bi-diagonal representations for phase type distributions and matrix-exponential distributions. Stoch. Models. 2(2), 289–317 (2006)CrossRefGoogle Scholar
  12. 12.
    Henley, E.J., Kumamoto, H.: Probabilistic Risk Assessment: Reliability Engineering, Design, and Analysis. IEEE Press, New York (1992)Google Scholar
  13. 13.
    Hermanns, H.: Interactive Markov chains: the quest for quantified quality, volume 2428 of Lecture Notes in Computer Science. Springer (2002)Google Scholar
  14. 14.
    Hermanns, H., Rettelbach, M.: Syntax, semantics, equivalences and axioms for MTIPP. In: Proceeding of the 2nd workshop PAPM ’94, pp. 71–87 (1994)Google Scholar
  15. 15.
    Hillston, J.: A compositional approach to performance modelling. Cambridge University Press, Cambridge (1996)Google Scholar
  16. 16.
    Johnson, M.A., Taaffe, M.R.: The denseness of phase distributions. School of Industrial Engineering Research Memoranda, pp. 88–20. Purdue University (1988)Google Scholar
  17. 17.
    Klin, B., Sassone, V.: Structural operational semantics for stochastic process calculi. In: Amadio, R.M. (ed) Foundations of Software Science and Computational Structures, 11th International Conference, FOSSACS 2008, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29–April 6, 2008. Proceedings, volume 4962 of Lecture Notes in Computer Science, pp. 428–442. Springer (2008)Google Scholar
  18. 18.
    Maier, R.S., O’Cinneide, C.A.: Closure characterisation of phase-type distributions. J. Appl. Probab. 29(1), 92–103 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Milner, R.: Communicating and mobile systems: the \(\pi \)-calculus. Cambridge University Press, New York (1999)Google Scholar
  20. 20.
    Neuts, M.F.: Matrix-geometric solutions in stochastic models: an algorithmic approach. Dover, New York (1981)Google Scholar
  21. 21.
    Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-based transition systems for stochastic process calculi. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) Automata, Languages and Programming, volume 5556 of Lecture Notes in Computer Science, pp. 435–446. Springer, Berlin/Heidelberg (2009)Google Scholar
  22. 22.
    O’Cinneide, C.A.: Characterization of phase-type distributions. Commun. Stat. Stoch. Models. 6(1), 1–57 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    O’Cinneide, C.A.: Phase-type distributions and invariant polytopes. Adv. Appl. Probab. 23(43), 515–535 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    O’Cinneide, C.A.: Triangular order of triangular phase-type distributions. Commun. Stat. Stoch. Models. 9(4), 507–529 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Plotkin, G.D.: A structural approach to operational semantics. J. Logic Algebraic Program. 60–61, 17–140 (2004)MathSciNetGoogle Scholar
  26. 26.
    Priami, C.: Stochastic \(\pi \)-calculus. Comput. J. 38(7), 578–589 (1995)CrossRefGoogle Scholar
  27. 27.
    Pulungan, R.: Reduction of Acyclic Phase-Type Representations. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany (2009)Google Scholar
  28. 28.
    Pulungan, R., Hermanns, H.: The minimal representation of the maximum of Erlang distributions. In: Proceedings of the 14th GI/ITG Conference - Measurement, Modelling and Evaluation of Computer and Communication Systems, Dortmund, March 31–April 2, 2008, pp. 207–221. VDE Verlag (2008) Google Scholar
  29. 29.
    Pulungan, R., Hermanns, H.: Acyclic minimality by construction–almost. In: QEST 2009, Sixth International Conference on the Quantitative Evaluation of Systems, Budapest, Hungary, 13–16 September 2009, pp. 63–72. IEEE Computer Society (2009)Google Scholar
  30. 30.
    Timmer, M., Katoen, J.-P., van de Pol, J., Stoelinga, M.: Efficient modelling and generation of Markov automata. In: Koutny, M., Ulidowski I. (eds.) CONCUR 2012-Concurrency Theory-23rd International Conference, CONCUR 2012, Newcastle upon Tyne, UK, September 4–7 (2012) Proceedings, volume 7454 of Lecture Notes in Computer Science, pp. 364–379. Springer (2012)Google Scholar
  31. 31.
    Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook. U.S. Nuclear Regulatory Commission, Washington, DC (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Jurusan Ilmu Komputer dan Elektronika, Fakultas Matematika dan Ilmu Pengetahuan AlamUniversitas Gadjah MadaYogyakartaIndonesia
  2. 2.Department of Computer ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations