Tradeoff exploration between reliability, power consumption, and execution time for embedded systems

The TSH tricriteria scheduling heuristic
  • Ismail Assayad
  • Alain Girault
  • Hamoudi Kalla


For autonomous critical real-time embedded (e.g., satellite), guaranteeing a very high level of reliability is as important as keeping the power consumption as low as possible. We propose an off-line scheduling heuristic which, from a given software application graph and a given multiprocessor architecture (homogeneous and fully connected), produces a static multiprocessor schedule that optimizes three criteria: its length (crucial for real-time systems), its reliability (crucial for dependable systems), and its power consumption (crucial for autonomous systems). Our tricriteria scheduling heuristic, called TSH, uses the active replication of the operations and the data-dependencies to increase the reliability and uses dynamic voltage and frequency scaling to lower the power consumption. We demonstrate the soundness of TSH. We also provide extensive simulation results to show how TSH behaves in practice: first, we run TSH on a single instance to provide the whole Pareto front in 3D; second, we compare TSH versus the ECS heuristic (Energy-Conscious Scheduling) from the literature; and third, we compare TSH versus an optimal Mixed Linear Integer Program.


Embedded systems Multicriteria optimization Reliability Power consumption  DVFS Multiprocessor scheduling Pareto front 


  1. 1.
    Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Secure Comput. 1(1), 11–33 (2004)CrossRefGoogle Scholar
  2. 2.
    Balaban, H.S.: Some effects of redundancy on system reliability. In: National symposium on reliability and quality control, pp. 385–402. Washington, USA (1960)Google Scholar
  3. 3.
    Baleani, M., Ferrari, A., Mangeruca, L., Peri, M., Pezzini, S., Sangiovanni-Vincentelli, A.: Fault-tolerant platforms for automotive safety-critical applications. In: International conference on compilers, architectures and synthesis for embedded systems, CASES’03, San Jose (CA), USA. ACM, New-York, November 2003Google Scholar
  4. 4.
    Benoit, A., Dufossé, F., Girault, A., Robert, Y.: Reliability and performance optimization of pipelined real-time systems. In: International Conference on Parallel Processing, ICPP’10, pp. 150–159, San Diego (CA), USA, September 2010Google Scholar
  5. 5.
    Burd, T.D., Brodersen, R.W.: Energy efficient CMOS micro-processor design. In: Hawaii international conference on system sciences, HICSS’95, Honolulu (HI), USA. IEEE, Los Alamitos (1995)Google Scholar
  6. 6.
    Colin, A., Puaut, I.: Worst case execution time analysis for a processor with branch prediction. Real Time Syst. 18(2/3), 249–274 (2000)CrossRefGoogle Scholar
  7. 7.
    Ibm, ILOG CPLEX Optimizer. (2010). Accessed 4 Sept 2012
  8. 8.
    Dogan, A., Özgüner, F.: Matching and scheduling algorithms for minimizing execution time and failure probability of applications in heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 308–323 (2002)CrossRefGoogle Scholar
  9. 9.
    Elnozahy, E., Kistler, M., Rajamony, R.: Energy-efficient server clusters. In: Workshop on Power-Aware Computing Systems, WPACS’02, pp. 179–196, Cambridge, USA, February 2002Google Scholar
  10. 10.
    Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling, H., Thesing, S., Wilhelm, R.: Reliable and precise WCET determination for a real-life processor. In International Workshop on Embedded Software, EMSOFT’01. LNCS, vol 2211. Tahoe City, Springer, USA, October 2001Google Scholar
  11. 11.
    Gärtner, F.: Fundamentals of fault-tolerant distributed computing in asynchronous environments. ACM Comput. Surv. 31(1), 1–26 (1999)CrossRefGoogle Scholar
  12. 12.
    Girault, A., Kalla, H.: A novel bicriteria scheduling heuristics providing a guaranteed global system failure rate. IEEE Trans. Dependable Secure Comput. 6(4), 241–254 (2009)CrossRefGoogle Scholar
  13. 13.
    Girault, A., Saule, E., Trystram, D.: Reliability versus performance for critical applications. J. Parallel Distrib. Comput. 69(3), 326–336 (2009) Google Scholar
  14. 14.
    Grandpierre, T., Lavarenne, C., Sorel, Y.: Optimized rapid prototyping for real-time embedded heterogeneous multiprocessors. In: International Workshop on Hardware/Software Co-Design, CODES’99, Rome, Italy, ACM, New-York, May 1999Google Scholar
  15. 15.
    Hu, T.C.: Parallel sequencing and assembly line problems. Oper. Res. 9, 841–848 (1961)CrossRefGoogle Scholar
  16. 16.
    Knight, J.C., Leveson, N.G.: An experimental evaluation of the assumption of independence in multi-version programming. IEEE Trans. Softw. Eng. 12(1), 96–109 (1986)CrossRefGoogle Scholar
  17. 17.
    Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Applications. Kluwer Academic Publishers, Hingham (1997)zbMATHGoogle Scholar
  18. 18.
    Lee, Y.C., Zomaya, A.Y.: Minimizing energy consumption for precedence-constrained applications using dynamic voltage scaling. In: IEEE/ACM international symposium on cluster computing and the grid, SCCG’09 (2009)Google Scholar
  19. 19.
    Leung, J.Y.-T. (ed.): Handbook of Scheduling. Algorithms: Models, and Performance Analysis. Chapman& Hall/CRC Press, Boca Raton (2004)zbMATHGoogle Scholar
  20. 20.
    Lloyd, D., Lipow, M.: Reliability: Management, Methods, and Mathematics, chapter 9. Prentice-Hall, USA (1962)Google Scholar
  21. 21.
    Luo, J., Peh, L.-S., Jha, N.: Simultaneous dynamic voltage scaling of processors and communication links in real-time distributed embedded systems. In: Design automation and test in Europe conference, DATE’03, pp. 1150–1151, Munich, Germany, March 2003Google Scholar
  22. 22.
    Melhem, R., Mossé, D., Elnozahy, E.N.: The interplay of power management and fault recovery in real-time systems. IEEE Trans. Comput. 53(2), 217–231 (2004)CrossRefGoogle Scholar
  23. 23.
    Pering, T., Burd, T.D., Brodersen, R.W.: The simulation and evaluation of dynamic voltage scaling algorithms. In: International symposium on low power electronics and design, ISLPED’98, pp. 76–81, Monterey (CA), USA, ACM, New-York, August 1998Google Scholar
  24. 24.
    Pop, P., Poulsen, K., Izosimov, V.: Scheduling and voltage scaling for energy/reliability trade-offs in fault-tolerant time-triggered embedded systems. In: International conference on hardware-software codesign and system synthesis, CODES+ISSS’07, Salzburg, Austria, ACM, New-York, October 2007Google Scholar
  25. 25.
    Shatz, S.M., Wang, J.-P.: Models and algorithms for reliability-oriented task-allocation in redundant distributed-computer systems. IEEE Trans. Reliab. 38(1), 16–26 (1989)CrossRefGoogle Scholar
  26. 26.
    Souyris, J., Pavec, E.L., Himbert, G., Jégu, V., Borios, G., Heckmann, R.: Computing the worst case execution time of an avionics program by abstract interpretation. In: International Workshop on Worst-case Execution Time, WCET’05, pp. 21–24, Mallorca, Spain, July 2005Google Scholar
  27. 27.
    Theiling, H., Ferdinand, C., Wilhelm, R.: Fast and precise WCET prediction by separate cache and path analyses. Real-time Syst. 18(2/3), 157–179 (2000)CrossRefGoogle Scholar
  28. 28.
    T’kindt, V., Billaut, J.-C.: Multicriteria Scheduling: Theory, Models and Algorithms. Springer, Berlin (2006)zbMATHGoogle Scholar
  29. 29.
    Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mueller, F., Puaut, I., Puschner, P., Staschulat, J., Stenström, P.: The determination of worst-case execution times–overview of the methods and survey of tools. ACM Trans. Embed. Comput. Syst. 7(3), 1–53 (2008)CrossRefGoogle Scholar
  30. 30.
    Zhu, D., Melhem, R., Mossé, D.: The effects of energy management on reliability in real-time embedded systems. In: International conference on computer aided design, ICCAD’04, pp. 35–40, San Jose, USA, November 2004Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.ENSEM (RTSE Team)University Hassan IICasablancaMorocco
  2. 2.POP ART Team and LIG LabINRIA and Grenoble UniversityGrenobleFrance
  3. 3.LaSTIC Lab, REDS TeamUniversity of BatnaBatnaAlgeria

Personalised recommendations