Program sketching

Synthesis

Abstract

Sketching is a synthesis methodology that aims to bridge the gap between a programmer’s high-level insights about a problem and the computer’s ability to manage low-level details. In sketching, the programmer uses a partial program, a sketch, to describe the desired implementation strategy, and leaves the low-level details of the implementation to an automated synthesis procedure. In order to generate an implementation from the programmer provided sketch, the synthesizer uses counterexample-guided inductive synthesis (CEGIS). Inductive synthesis refers to the process of generating candidate implementations from concrete examples of correct or incorrect behavior. CEGIS combines a SAT-based inductive synthesizer with an automated validation procedure, a bounded model-checker, that checks whether the candidate implementation produced by inductive synthesis is indeed correct and to produce new counterexamples. The result is a synthesis procedure that is able to handle complex problems from a variety of domains including ciphers, scientific programs, and even concurrent data-structures.

Keywords

SAT/SMT applications Constraint-based synthesis Sketching Synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amit, D., Rinetzky, N., Sagiv, M., Yahav, E.: Comparison under abstraction for verifying linearizability. In: In 19th International Conference on Computer Aided Verification (CAV) (2007)Google Scholar
  2. 2.
    Anderson, S.E.: Bit twiddling hacks (1997–2005). http://www-graphics.stanford.edu/~seander/bithacks.html
  3. 3.
    Angluin D., Smith C.H.: Inductive inference: theory and methods. ACM Comput. Surv. 15(3), 237–269 (1983)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Biere, A.: Resolve and expand. In: Proceedings of the 7th International Conference on Theory and Applications of Satisfiability Testing, SAT’04, pp. 59–70. Springer, Berlin (2005)Google Scholar
  5. 5.
    Clarke E., Grumberg O., Jha S., Lu Y., Veith H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Clarke, E., Kroening, D.,Yorav, K.: Behavioral consistency of c and verilog programs using bounded model checking. In: Proceedings of the 40th Annual Design Automation Conference, DAC ’03, pp. 368–371. ACM, New York (2003)Google Scholar
  7. 7.
    Advanced Encryption Standard (AES): U.S. DEPARTMENT OF COMMERCE/National Institute of Standards and Technology, November (2001). http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
  8. 8.
    Gold E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)CrossRefMATHGoogle Scholar
  9. 9.
    Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided component-based program synthesis. In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering, ICSE ’10, vol. 1, pp. 215–224. ACM, New York (2010)Google Scholar
  10. 10.
    McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers (1993)Google Scholar
  11. 11.
    Mishchenko, A., Chatterjee, S., Brayton, R.: Dag-aware AIG rewriting: a fresh look at combinational logic synthesis. In: DAC ’06: Proceedings of the 43rd Annual Conference on Design Automation, pp. 532–535. ACM Press, New York (2006)Google Scholar
  12. 12.
    Ranjan, D.P., Tang, D., Malik, S.: A comparative study of 2qbf algorithms. In: The Seventh International Conference on Theory and Applications of Satisfiability Testing (SAT 2004), May (2004)Google Scholar
  13. 13.
    Samulowitz, H., Bacchus, F.: Binary clause reasoning in qbf. In: Proceedings of the 9th International Conference on Theory and Applications of Satisfiability Testing, SAT’06, pp. 353–367. Springer, Berlin (2006)Google Scholar
  14. 14.
    Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for c. In: ESEC/SIGSOFT FSE, pp. 263–272 (2005)Google Scholar
  15. 15.
    Shapiro E.Y.: Algorithmic Program Debugging. MIT Press, Cambridge (1983)Google Scholar
  16. 16.
    Solar-Lezama A.: Program Synthesis By Sketching. PhD thesis, EECS, UC Berkeley (2008)Google Scholar
  17. 17.
    Solar-Lezama, A., Arnold, G., Tancau, L., Bodík, R., Saraswat, V., Seshia, S.: Sketching stencils. In: PLDI ’07: Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design and Implementation, vol. 42, pp. 167–178. ACM, New York (2007)Google Scholar
  18. 18.
    Solar-Lezama, A., Jones, C., Arnold, G., Bodík, R.: Sketching concurrent datastructures. In: Proceedings of the ACM SIGPLAN 2008 Conference on Programming Language Design and Implementation. Tucson, June 7–13 (2008)Google Scholar
  19. 19.
    Solar-Lezama, A., Tancau, L., Bodík, R., Saraswat, V., Seshia, S.: Combinatorial sketching for finite programs. In: ASPLOS’06. ACM Press, San Jose (2006)Google Scholar
  20. 20.
    Srivastava S., Gulwani S., Foster J.: From program verification to program synthesis. POPL, Madrid (2010)Google Scholar
  21. 21.
    Summers P.D.: A methodology for lisp program construction from examples. J. ACM 24(1), 161–175 (1977)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quantified bit-vector formulas. In: Bloem, R., Sharygina, N. (eds.) FMCAD, pp. 239–246. IEEE (2010)Google Scholar
  23. 23.
    Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pp. 351–363 (2005)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Massachussets Institute of TechnologyCambridgeUSA

Personalised recommendations