Falsification of LTL safety properties in hybrid systems

TACAS 2009

Abstract

This paper develops a novel approach for the falsification of safety properties given by a syntactically safe linear temporal logic (LTL) formula \({\phi}\) for hybrid systems with nonlinear dynamics and input controls. When the hybrid system is unsafe, the approach computes a trajectory that indicates violation of \({\phi}\) . The approach is based on an effective combination of model checking and motion planning. Model checking searches on-the-fly the automaton of \({\neg\phi}\) and an abstraction of the hybrid system for a sequence σ of propositional assignments that violates \({\phi}\) . Motion planning incrementally extends trajectories that satisfy more and more of the propositional assignments in σ. Model checking and motion planning regularly exchange information to find increasingly useful sequences σ for extending the current trajectories. Experiments that test LTL safety properties on a robot navigation benchmark modeled as a hybrid system with nonlinear dynamics and input controls demonstrate the computational efficiency of the approach. Experiments also indicate significant speedup when using minimized DFA instead of non-minimized NFA for representing \({\neg\phi}\) .

Keywords

Hybrid systems Linear-temporal logic Safety properties Motion planning Model checking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tomlin C.J., Mitchell I., Bayen A., Oishi M.: Computational techniques for the verification and control of hybrid systems. Proc. IEEE 91(7), 986–1001 (2003)CrossRefGoogle Scholar
  2. 2.
    Alur R., Courcoubetis C., Halbwachs N., Henzinger T.A., Ho P.H., Nicollin X., Olivero A., Sifakis J., Yovine S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1), 3–34 (1995)MATHCrossRefGoogle Scholar
  3. 3.
    Henzinger, T., Kopke, P., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? In: ACM Symp on Theory of Computing, pp. 373–382 (1995)Google Scholar
  4. 4.
    Chutinan C., Krogh B.H.: Computational techniques for hybrid system verification. IEEE Trans. Autom. Control 48(1), 64–75 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Mitchell, I.M.: Comparing forward and backward reachability as tools for safety analysis. In: Hybrid Systems: Computation and Control. LNCS, vol. 4416, pp. 428–443 (2007)Google Scholar
  6. 6.
    Alur R., Henzinger T.A., Lafferriere G., Pappas G.: Discrete abstractions of hybrid systems. Proc. IEEE 88(7), 971–984 (2000)CrossRefGoogle Scholar
  7. 7.
    Clarke E., Fehnker A., Han Z., Krogh B., Ouaknine J., Stursberg O., Theobald M.: Abstraction and counterexample-guided refinement in model checking of hybrid systems. Int. J. Found. Comput. Sci. 14(4), 583–604 (2003)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Giorgetti, N., Pappas, G.J., Bemporad, A.: Bounded model checking for hybrid dynamical systems. In: Conference on Decision and Control, Seville, Spain, pp. 672–677 (2005)Google Scholar
  9. 9.
    Branicky M.: Universal computation and other capabilities of continuous and hybrid systems. Theor. Comput. Sci. 138(1), 67–100 (1995)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Branicky M.S., Curtiss M.M., Levine J., Morgan S.: Sampling-based planning, control, and verification of hybrid systems. IEE Proc. Control Theory Appl. 153(5), 575–590 (2006)CrossRefGoogle Scholar
  11. 11.
    Bhatia, A., Frazzoli, E.: Incremental search methods for reachability analysis of continuous and hybrid systems. In: Hybrid Systems: Computation and Control. LNCS, vol. 2993, pp. 142–156 (2004)Google Scholar
  12. 12.
    Esposito, J.M., Kim, J., Kumar, V.: Adaptive RRTs for validating hybrid robotic control systems. In: Workshop on Algorithmic Foundations of Robotics, Zeist, Netherlands, pp. 107–132 (2004)Google Scholar
  13. 13.
    Kim, J., Esposito, J.M., Kumar, V.: An RRT-based algorithm for testing and validating multi-robot controllers. In: Robotics: Science and Systems, Boston, pp. 249–256 (2005)Google Scholar
  14. 14.
    Nahhal T., Dang T.: Coverage-guided test generation for continuous and hybrid systems. Formal Methods Syst. Des. 34(2), 183–213 (2009)MATHCrossRefGoogle Scholar
  15. 15.
    Plaku, E., Kavraki, L.E., Vardi, M.Y.: Hybrid systems: from verification to falsification. In: International Conference on Computer Aided Verification. LNCS, vol. 4590, pp. 468–481 (2007)Google Scholar
  16. 16.
    Plaku E., Kavraki L.E., Vardi M.Y.: Hybrid systems: from verification to falsification by combining motion planning and discrete search. Formal Methods Syst. Des. 34(2), 157–182 (2009)MATHCrossRefGoogle Scholar
  17. 17.
    Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi, M.: Benefits of bounded model checking at an industrial setting. In: International Conference on Computer Aided Verification. LNCS, vol. 2102, pp. 436–453 (2001)Google Scholar
  18. 18.
    Cheng P., Kumar V.: Sampling-based falsification and verification of controllers for continuous dynamic systems. Int. J. Robot. Res. 27(11–12), 1232–1245 (2008)CrossRefGoogle Scholar
  19. 19.
    Bhatia, A., Frazzoli, E.: Sampling-based resolution-complete safety falsification of linear hybrid systems. In: IEEE Conference on Decision and Control, New Orleans, pp. 3405–3411 (2007)Google Scholar
  20. 20.
    Bhatia, A., Frazzoli, E.: Sampling-based resolution-complete algorithms for safety falsification of linear systems. In: Hybrid Systems: Computation and Control. LNCS, vol. 4981, pp. 606–609 (2008)Google Scholar
  21. 21.
    LaValle S.M., Kuffner J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)CrossRefGoogle Scholar
  22. 22.
    Clarke E., Grumberg O., Peled D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  23. 23.
    Behrmann, G., David, A., Larsen, K.G., Mller, O., Pettersson, P., Yi, W.: Uppaal—present and future. In: Conference on Decision and Control, Orlando, Florida, pp. 2881–2886 (2001)Google Scholar
  24. 24.
    Fainekos G.E., Girard A., Kress-Gazit H., Pappas G.J.: Temporal logic motion planning for dynamic mobile robots. Automatica 45(2), 343–352 (2009)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Fainekos, G.E., Kress-Gazit, H., Pappas, G.: Temporal logic motion planning for mobile robots. In: IEEE International Conference on Robotics and Automation, Barcelona, Spain, pp. 2020–2025 (2005)Google Scholar
  26. 26.
    Kloetzer M., Belta C.: A fully automated framework for control of linear systems from temporal logic specifications. IEEE Trans. Autom. Control 53(1), 287–297 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kress-Gazit H., Fainekos G., Pappas G.J.: Temporal-logic-based reactive mission and motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009)CrossRefGoogle Scholar
  28. 28.
    Wongpiromsarn, T., Topcu, U., Murray, R.M.: Receding horizon temporal logic planning for dynamical systems. In: IEEE Conference on Decision and Control, Shanghai, China, pp. 5997–6004 (2009)Google Scholar
  29. 29.
    Kloetzer M., Belta C.: Temporal logic planning and control of robotic swarms by hierarchical abstractions. IEEE Trans. Robot. 23(2), 320–331 (2007)CrossRefGoogle Scholar
  30. 30.
    Batt G., Belta C., Weiss R.: Temporal logic analysis of gene networks under parameter uncertainty. IEEE Trans. Autom. Control 53, 215–229 (2008)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Damm W., Pinto G., Ratschan S.: Guaranteed termination in the verification of LTL properties of non-linear robust discrete time hybrid systems. Int. J. Found. Comput. Sci. 18(1), 63–86 (2007)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Kupferman O., Vardi M.: Model checking of safety properties. Formal Methods Syst. Des. 19(3), 291–314 (2001)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Sistla A.: Safety, liveness and fairness in temporal logic. Formal Aspects Comput. 6, 495–511 (1994)MATHCrossRefGoogle Scholar
  34. 34.
    Fehnker, A., Ivancic, F.: Benchmarks for hybrid systems verification. In: Hybrid Systems: Computation and Control. LNCS, vol. 2993, pp. 326–341 (2004)Google Scholar
  35. 35.
    Armoni, R., Egorov, S., Fraer, R., Korchemny, D., Vardi, M.: Efficient LTL compilation for SAT-based model checking. In: International Conference on Computer-Aided Design, San Jose, pp. 877–884 (2005)Google Scholar
  36. 36.
    Alpern B., Schneider F.: Recognizing safety and liveness. Distrib. Comput. 2, 117–126 (1987)MATHCrossRefGoogle Scholar
  37. 37.
    Choset H., Lynch K.M., Hutchinson S., Kantor G., Burgard W., Kavraki L.E., Thrun S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)Google Scholar
  38. 38.
    LaValle S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)MATHCrossRefGoogle Scholar
  39. 39.
    Esposito, J., Kumar, V., Pappas, G.: Accurate event detection for simulation of hybrid systems. In: Hybrid Systems: Computation and Control. LNCS, pp. 204–217 (2001)Google Scholar
  40. 40.
    Julius, A.A., Fainekos, G.E., Anand, M., Lee, I., Pappas, G.J.: Robust test generation and coverage for hybrid systems. In: Hybrid Systems: Computation and Control. LNCS, vol. 4416, pp. 329–342 (2007)Google Scholar
  41. 41.
    Plaku, E., Kavraki, L.E., Vardi, M.Y.: Discrete search leading continuous exploration for kinodynamic motion planning. In: Robotics: Science and Systems, Atlanta, Georgia, pp. 326–333 (2007)Google Scholar
  42. 42.
    Latvala, T.: Efficient model checking of safety properties. In Ball, T., Rajamani, S., (eds.) Model Checking Software. LNCS, vol. 2648, pp. 74–88 (2003)Google Scholar
  43. 43.
    Ladd, A.M.: Motion planning for physical simulation. PhD thesis, Rice University, Houston (2006)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Erion Plaku
    • 1
    • 2
  • Lydia E. Kavraki
    • 1
  • Moshe Y. Vardi
    • 1
  1. 1.Department of Computer ScienceRice UniversityHoustonUSA
  2. 2.Department of Electrical Engineering and Computer ScienceCatholic University of AmericaWashingtonUSA

Personalised recommendations