Advertisement

A lightweight regular model checking approach for parameterized systems

  • Giorgio Delzanno
  • Ahmed Rezine
RMC Regular Model Checking

Abstract

In recent years, we have designed a lightweight approach to regular model checking specifically designed for parameterized systems with global conditions. Our approach combines the strength of regular languages, used for representing infinite sets of configurations, with symbolic model checking and approximations. In this paper, we give a uniform presentation of several variations of a symbolic backward reachability scheme in which different classes of regular expressions are used in place of BDDs. The classification of the proposed methods is based on the precision of the resulting approximated analysis.

Keywords

Parameterized systems Abstraction Regular model checking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems for infinite-state systems. LICS 313–321 (1996)Google Scholar
  2. 2.
    Abdulla, P.A., Chen, Y.-F., Delzanno, G., Haziza, F., Hong, C.-D., Rezine, A.: Constrained monotonic abstraction: a cegar for parameterized verification. In: CONCUR, pp. 86–101 (2010)Google Scholar
  3. 3.
    Abdulla, P.A., Ben Henda, N., Delzanno, G., Rezine, A.: Regular model checking without transducers. In: TACAS, pp. 721–736 (2007)Google Scholar
  4. 4.
    Abdulla, P.A., Ben Henda, N., Delzanno, G., Rezine, A.: Handling parameterized systems with non-atomic global conditions. In: VMCAI, pp. 22–36 (2008)Google Scholar
  5. 5.
    Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state processes with global conditions. In: CAV, pp. 145–157 (2007)Google Scholar
  6. 6.
    Abdulla, P.A., Delzanno, G., Haziza, F., Rezine, A.: Parameterized tree systems. In: FORTE’08, pp. 69–83 (2008)Google Scholar
  7. 7.
    Abdulla, P.A., Delzanno, G., Rezine, A.: Approximated context-sensitive analysis for parameterized verification. In: FMOODS/FORTE, pp. 41–56 (2009)Google Scholar
  8. 8.
    Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.: Parameterized verification with automatically computed inductive assertions. In: CAV, pp. 221–234 (2001)Google Scholar
  9. 9.
    Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In: CAV, pp. 372–386 (2004)Google Scholar
  10. 10.
    Bouajjani A., Muscholl A., Touili T.: Permutation rewriting and algorithmic verification. Inf. Comp. 205(2), 199–224 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Clarke, E., Talupur, M., Veith, H.: Environment abstraction for parameterized verification. In: VMCAI, pp. 126–141 (2006)Google Scholar
  12. 12.
    Courtois P.-J., Heymans F., Lorge Parnas D.: Concurrent control with “readers” and “writers”. CACM 14(10), 667–668 (1971)Google Scholar
  13. 13.
    Delzanno G.: Constraint-based verification of parameterized cache coherence protocols. FMSD 23(3), 257–301 (2003)zbMATHGoogle Scholar
  14. 14.
    Emmi, M., Jhala, R., Kohler, E., Majumdar, R.: Verifying reference counted objects. In: TACAS, pp. 352–367 (2009)Google Scholar
  15. 15.
    Ghilardi S., Ranise S.: Backward reachability of array-based systems by SMT solving: termination and invariant synthesis. Log. Methods Comput. Sci. 6(4), 1–48 (2010)MathSciNetGoogle Scholar
  16. 16.
    Gribomont, E., Zenner, G.: Automated verification of Szymanski’s algorithm. In: TACAS, pp. 424–438 (1998)Google Scholar
  17. 17.
    Henzinger T.A., Ho P.-H., Wong-Toi H.: HyTech: a model checker for hybrid systems. STTT 1, 110–122 (1997)zbMATHGoogle Scholar
  18. 18.
    Higman G.: Ordering by divisibility in abstract algebras. Lond. Math. Soc. (3) 2(7), 326–336 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kesten Y., Maler O., Marcus M., Pnueli A., Shahar E.: Symbolic model checking with rich assertional languages. TCS 256, 93–112 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Lamport L.: A new solution of Dijkstra’s concurrent programming problem. Commun. ACM 17(8), 453–455 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Manna, Z., Pnueli, A.: An exercise in the verification of multi-process programs. In: Beauty is Our Business, pp. 289–301 (1990)Google Scholar
  22. 22.
    Nilsson, M.: Regular model checking. PhD thesis, Uppsala University (2005)Google Scholar
  23. 23.
    Pnueli, A., Ruah, S., Zuck, L.: Automatic deductive verification with invisible invariants. In: TACAS, pp. 82–97 (2001)Google Scholar
  24. 24.
    Talupur, M.: Abstraction techniques for parameterized verification. PhD thesis, CMU (2006)Google Scholar
  25. 25.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. LICS 332–344 (1986)Google Scholar
  26. 26.
    Yavuz-Kahveci T., Bultan T.: A symbolic manipulator for automated verification of reactive systems with heterogeneous data types. STTT 5(1), 15–33 (2003)Google Scholar
  27. 27.
    Yavuz-Kahveci, T., Bultan, T.: Verification of parameterized hierarchical state machines using action language verifier. In: MEMOCODE, pp. 79–88 (2005)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Università di GenovaGenoaItaly
  2. 2.Uppsala UniversityUppsalaSweden

Personalised recommendations