Statistical abstraction and model-checking of large heterogeneous systems

  • Ananda Basu
  • Saddek Bensalem
  • Marius Bozga
  • Benoît Delahaye
  • Axel LegayEmail author
Regular Paper


We propose a new simulation-based technique for verifying applications running within a large heterogeneous system. Our technique starts by performing simulations of the system to learn the context in which the application is used. Then, it creates a stochastic abstraction for the application, which considers the context information. This smaller model can be verified using efficient techniques such as statistical model checking. We have applied our technique to an industrial case study: the cabin communication system of an airplane. We use the BIP toolset to model and simulate the system. We have conducted experiments to verify the clock synchronization protocol i.e., the application used to synchronize the clocks of all computing devices within the system.


Statistical model checking Stochastic abstraction Simulation Heterogeneous systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ARINC 664, Aircraft Data Network, Part 7: Avionics Full Duplex Switched Ethernet (AFDX) Network (2005)Google Scholar
  2. 2.
    II61588: Precision clock synchronization protocol for networked measurement and control systems (2004)Google Scholar
  3. 3.
    Alur R., Dill D.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A., Siffakis, E.: Verification of an afdx infrastructure using simulations and probabilities. In: Proceedings of 1st Conference on Runtime Verification (RV), Malta, 2010. Springer, Berlin (2010)Google Scholar
  5. 5.
    Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time systems in BIP. In: SEFM06, Pune, India. pp. 3–12 (2006)Google Scholar
  6. 6.
    Basu, A., Bensalem, S., Bozga, M., Caillaud, B., Delahaye, B., Legay, A.: Statistical abstraction and model-checking of large heterogeneous systems. In: FORTE 2010, pp. 32–48. LNCS 6117, Springer, Berlin (2010)Google Scholar
  7. 7.
    Bensalem, S., Delahaye, B., Legay, A.: Statistical model checking: present and future. In: Proceedings of 1st Conference on Runtime Verification (RV), Malta, 2010. Springer, Berlin (2010)Google Scholar
  8. 8.
    Bucklew J.: Introduction to Rare Event Simulation. Springer, Berlin (2004)zbMATHGoogle Scholar
  9. 9.
    Charara, H., Fraboul, C.: Modelling and simulation of an avionics full duplex switched ethernet. In: Proceedings of the Advanced Industrial Conference on Telecommunications/Service Assurance with Partial and Intermittent Resources Conference/E-Learning on Telecommunication Workshop. IEEE (2005)Google Scholar
  10. 10.
    Charara, H., Scharbarg, J.L., Ermont, J., Fraboul, C.: Methods for bounding end-to-end delays on AFDX network. In: ECRTS. IEEE Computer Society (2006)Google Scholar
  11. 11.
    Clarke, E.M., Donzé, A., Legay, A.: Statistical model checking of mixed-analog circuits with an application to a third order delta-sigma modulator. In: HVC. LNCS, vol. 5394, pp. 149–163. Springer, Berlin (to appear, 2008)Google Scholar
  12. 12.
    Clarke, E.M., Faeder, J.R., Langmead, C.J., Harris, L.A., Jha, S.K., Legay, A.: Statistical model checking in biolab: applications to the automated analysis of t-cell receptor signaling pathway. In: CMSB. LNCS, vol. 5307, pp. 231–250. Springer, Berlin (2008)Google Scholar
  13. 13.
    Efron, B., Tibshirani, R.: An Introduction to the bootstrap. Hall/CRC Press Monographs on Statistics and Applied Probability (1994)Google Scholar
  14. 14.
    Grosu, R., Smolka, S.A.: Monte carlo model checking. In: TACAS. LNCS, vol. 3440, pp. 271–286. Springer, Berlin (2005)Google Scholar
  15. 15.
    He, R., Jennings, P., Basu, S., Ghosh, A.P., Wu, H.: A bounded statistical approach for model checking of unbounded until properties. In: ASE 2010, 25th IEEE/ACM International Conference on Automated Software Engineering, Antwerp, Belgium, September 20–24, 2010. pp. 225–234. ACM (2010)Google Scholar
  16. 16.
    Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: VMCAI. LNCS, vol. 2937, pp. 73–84. Springer, Berlin (2004)Google Scholar
  17. 17.
    Hoeffding W.: Probability inequalities. J. Am. Stat. Assoc. 58, 13–30 (1963)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Jansen, D.N., Katoen, J.P., Oldenkamp, M., Stoelinga, M., Zapreev, I.S.: How fast and fat is your probabilistic model checker? an experimental performance comparison. In: HVC. LNCS, vol. 4899. Springer, Berlin (2007)Google Scholar
  19. 19.
    Jennings, P., Ghosh, A.P., Basu, S.: A two-phase approximation for model checking probabilistic unbounded until properties of probabilistic systems. ACM Transactions on Software Engineering and Methodology (TOSEM) (2011)Google Scholar
  20. 20.
    Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A bayesian approach to model checking biological systems. In: CMSB. LNCS, vol. 5688, pp. 218–234. Springer, Berlin (2009)Google Scholar
  21. 21.
    Katoen, J.P., Zapreev, I.S.: Simulation-based ctmc model checking: An empirical evaluation. In: Proceedings of 6th International Conference on the Quantitative Evaluation of Systems (QEST). pp. 31–40. IEEE Computer Society (2009)Google Scholar
  22. 22.
    Laplante, S., Lassaigne, R., Magniez, F., Peyronnet, S., de Rougemont, M.: Probabilistic abstraction for model checking: an approach based on property testing. ACM Trans. Comput. Log. 8(4) (2007)Google Scholar
  23. 23.
    Parekh A.K., Gallagher R.G.: A generalized processor sharing approach to flow control in integrated services networks: the multiple node case. IEEE/ACM Trans. Netw. 2(2), 137–150 (1994)CrossRefGoogle Scholar
  24. 24.
    Rabih, D.E., Pekergin, N.: Statistical model checking using perfect simulation. In: Proceedings of 7th International Conference on Automated Technology for Verification and Analysis (ATVA). Lecture Notes in Computer Science, vol. 5799, pp. 120–134. Springer, Berlin (2009)Google Scholar
  25. 25.
    Scharbarg, J.L., Fraboul, C.: Simulation for end-to-end delays distribution on a switched ethernet. In: ETFA. IEEE (2007)Google Scholar
  26. 26.
    Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box probabilistic systems. In: CAV. pp. 202–215. LNCS 3114. Springer, Berlin (2004)Google Scholar
  27. 27.
    Steinkellner, S., Andersson, H., Lind, I., Krus, P.: Hosted simulation for heterogeneous aircraft system development. In: Proceedings of 26th International Congress of the Aeronautical Sciences (2008)Google Scholar
  28. 28.
    Wald A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–186 (1945)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Younes, H.L.S.: Verification and planning for stochastic processes with asynchronous events. Ph.D. thesis, Carnegie Mellon (2005)Google Scholar
  30. 30.
    Younes, H.L.S.: Error control for probabilistic model checking. In: VMCAI. pp. 142–156. LNCS 3855. Springer, Berlin (2006)Google Scholar
  31. 31.
    Younes H.L.S., Kwiatkowska M.Z., Norman G., Parker D.: Numerical vs. statistical probabilistic model checking. STTT 8(3), 216–228 (2006)CrossRefGoogle Scholar
  32. 32.
    Younes H.L.S., Simmons R.G.: Statistical probabilistic model checking with a focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Zolotarev, V.M.: One-dimensional stable distribution. American Mathematical Society, Providence (1986)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ananda Basu
    • 1
  • Saddek Bensalem
    • 1
  • Marius Bozga
    • 1
  • Benoît Delahaye
    • 2
  • Axel Legay
    • 3
    Email author
  1. 1.Verimag LaboratoryUniversité Joseph Fourier, CNRSGrenobleFrance
  2. 2.Université de Rennes 1/IRISARennesFrance
  3. 3.INRIA/IRISARennesFrance

Personalised recommendations