Experimental assessment of combining pattern matching strategies with VIATRA2

  • Ákos HorváthEmail author
  • Gábor Bergmann
  • István Ráth
  • Dániel Varró
GraBaTs 2008


As recent tool contests demonstrated graph transformation tools scale up to handle very large models for model transformations, thanks to recent advances in graph pattern matching techniques. In this paper, we assess the performance and capabilities of the Viatra2 model transformation framework by implementing the AntWorld case study of the GraBats 2008 graph transformation tool contest. First, we extend initial measurements carried out in Bergmann et al. (Proceedings of ICMT ’09, 2nd International Conference on Model Transformation, Springer, Berlin, 2009) to assess the effects of combining local search-based and incremental pattern matching strategies. Moreover, we also assess the performance characteristics of various language features of Viatra2 as well as the cost of certain model manipulation operations. We observe by experimentation how Viatra2 can scale up to large iteratively growing model sizes and focus on execution time and memory consumption. We believe that the results obtained from the benchmark example can set the course for further performance enhancement of Viatra2 and other future model transformation frameworks.


Graph pattern matching Graph transformation Performance analysis Model simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergmann, G., Horváth, A., Ráth, I., Varró, D.: Efficient model transformations by combining pattern matching strategies. In: Proceedings of ICMT ’09 , 2nd International Conference on Model Transformation, Springer, Berlin (2009)Google Scholar
  2. 2.
    Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G., (eds.): Handbook on Graph Grammars and Computing by Graph Transformation. Applications, Languages and Tools, vol. 2. World Scientific (1999)Google Scholar
  3. 3.
    The AGTIVE Tool Contest: official website (2007)
  4. 4.
    GraBaTs—Graph-Based Tools: The Contest: official website (2008)
  5. 5.
    Geiss, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.M.: GrGen: a fast SPO-based graph rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) Graph Transformations—ICGT 2006. Lecture Notes in Computer Science, pp 383–397. Springer, Natal (2006)Google Scholar
  6. 6.
    Nickel, U., Niere, J., Zündorf, A.: Tool demonstration: the FUJABA environment. In: The 22nd International Conference on Software Engineering (ICSE), Limerick, Ireland. ACM Press, New York (2000)Google Scholar
  7. 7.
    VIATRA—VIsual Automated model TRAnsformations: The Viatra2 Homepage
  8. 8.
    Varró, G., Varró, D., Schürr, A.: Incremental graph pattern matching: data structures and initial experiments. In: Karsai, G., Taentzer, G. (eds) Graph and Model Transformation (GraMoT 2006). Electronic Communications of the EASST, vol. 4. EASST (2006)Google Scholar
  9. 9.
    Bergmann, G., Ökrös, A., Ráth, I., Varró, D., Varró, G.: Incremental pattern matching in the VIATRA transformation system. In: GRaMoT’08, 3rd International Workshop on Graph and Model Transformation, 30th International Conference on Software Engineering (2008)Google Scholar
  10. 10.
    Matzner, A., Minas M., Schulte, A.: Efficient graph matching with application to cognitive automation. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) Applications of Graph Transformations with Industrial Relevance (AGTIVE 2007), Springer, Berlin (2007)Google Scholar
  11. 11.
    Hearnden D., Lawley M., Raymond K.: Incremental model transformation for the evolution of model-driven systems. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds) MoDELS. Lecture Notes in Computer Science, vol. 4199, pp. 321–335. Springer, Berlin (2006)Google Scholar
  12. 12.
    Mészáros, T., Madari, I., Mezei, G.: VMTS AntWorld submission. GraBaTs—4th International Workshop on Graph-Based Tools: The Contest (2008)Google Scholar
  13. 13.
    Bergmann, G., Horváth, A., Ráth, I., VarrÃ, D.: A benchmark evaluation of incremental pattern matching in graph transformation. In: ICGT2008, The 4th International Conference on Graph Transformation (2008)Google Scholar
  14. 14.
    Kovács, M., Lollini, P., Majzik, I., Bondavalli, A.: An integrated framework for the dependability evaluation of distributed mobile applications. In: Proceedings of International Workshop on Software Engineering for Resilient Systems (SERENE 2008), Newcastle upon Tyne, UK, November 17–19, pp. 29–38 (2008)Google Scholar
  15. 15.
    Zündorf, A.: Antworld benchmark specification, grabats 2008 (2008)
  16. 16.
    Varró D., Balogh A.: The model transformation language of the VIATRA2 framework. Sci. Comput. Program. 68(3), 214–234 (2007)zbMATHCrossRefGoogle Scholar
  17. 17.
    Varró D., Pataricza A.: VPM: A visual, precise and multilevel metamodeling framework for describing mathematical domains and UML. J. Softw. Syst. Model. 2(3), 187–210 (2003)CrossRefGoogle Scholar
  18. 18.
    Börger E., Stärk R.: Abstract State Machines. A method for High-Level System Design and Analysis. Springer, Berlin (2003)zbMATHGoogle Scholar
  19. 19.
    Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) Proceedings of 2nd International Conference on Graph Transformation (ICGT 2004), Rome, Italy. Lecture Notes on Computer Science, vol. 3256, pp. 319–335. Springer, Berlin (2004)Google Scholar
  20. 20.
    Dorigo M., Maniezzo V., Colorni A.: The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B 26, 29–41 (1996)CrossRefGoogle Scholar
  21. 21.
    Schürr, A., Winter, A.J., Zündorf, A.: The PROGRES approach: language and environment. In: [2, pp. 487–550]. World Scientific (1999)Google Scholar
  22. 22.
    ATLAS Group: The ATLAS Transformation Language. Available from
  23. 23.
    Zündorf, A.: Graph Pattern Matching in PROGRES. In: Selected papers from the 5th International Workshop on Graph Gramars and Their Application to Computer Science, London, UK, pp. 454–468. Springer, Berlin (1996)Google Scholar
  24. 24.
    Horváth, A., Varró, G., Varró, D.: Generic search plans for matching advanced graph patterns. In: Proceedings of the Sixth International Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT 2007), Braga, Portugal (March 31–April 1), pp. 57–68. Electornic Communications of the EASST (2007)Google Scholar
  25. 25.
    Varró, G., Varró, D., Friedl, K.: Adaptive graph pattern matching for model transformations using model-sensitive search plans. In: Karsai, G., Taentzer, G. (eds.) Proceedings of International Workshop on Graph and Model Transformation (GraMoT’05). ENTCS. Tallinn, Estonia, vol. 152, pp. 191–205. Elsevier, Amsterdam (2005)Google Scholar
  26. 26.
    Forgy C.L.: Rete: a fast algorithm for the many pattern/many object pattern match problem. Artif. Intell. 19(1), 17–37 (1982)CrossRefGoogle Scholar
  27. 27.
    Knuth, D.: The Art of Computer Programming, 3rd edn, vol. 1, Section 1.2.11: Asymptotic Representations. Addison-Wesley, Reading (1997)Google Scholar
  28. 28.
    Luby M.G.: Pseudorandomness and Cryptographic Applications. Princeton University Press, Princeton (1994)Google Scholar
  29. 29.
    Batz, G.V., Kroll, M., Geiss, R.: A first experimental evaluation of search plan driven graph pattern matching. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) Proceedings of 3rd International Workshop on Applications of Graph Transformation with Industrial Relevance (AGTIVE ’07). LNCS, vol. 5088. Springer, Berlin (2008)Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ákos Horváth
    • 1
    Email author
  • Gábor Bergmann
    • 1
  • István Ráth
    • 1
  • Dániel Varró
    • 1
  1. 1.Department of Measurement and Information SystemsBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations