Advertisement

PHAVer: algorithmic verification of hybrid systems past HyTech

  • Goran Frehse
Regular Contribution

Abstract

In 1995, HyTech broke new ground as a potentially powerful tool for verifying hybrid systems. But due to practical and systematic limitations it is only applicable to relatively simple systems. We address the main problems of HyTech with PHAVer, a new tool for the exact verification of safety properties of hybrid systems with piecewise constant bounds on the derivatives, so-called linear hybrid automata. Affine dynamics are handled by on-the-fly overapproximation and partitioning of the state space based on user-provided constraints and the dynamics of the system. PHAVer features exact arithmetic in a robust implementation that, based on the Parma Polyhedra Library, supports arbitrarily large numbers. To force termination and manage the complexity of the polyhedral computations, we propose methods to conservatively limit the number of bits and constraints of polyhedra. Experimental results for a navigation benchmark and a tunnel diode circuit demonstrate the effectiveness of the approach.

Keywords

Hybrid systems Verification Tools Polyhedra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Henzinger T.A., Ho P.-H. and Wong-Toi H. (1997). HYTECH: a model checker for hybrid systems. Int. J. Softw. Tools Technol. Transfer 1(1–2): 110–122 zbMATHGoogle Scholar
  2. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification (preliminary report). In: LICS, pp. 332–344. IEEE Computer Society (1986)Google Scholar
  3. Henzinger, T.A.: The theory of hybrid automata. In: Proc. 11th Annual IEEE Symposium on Logic in Computer Science, LICS’96, New Brunswick, New Jersey, 27–30 July 1996, pp. 278–292. IEEE Computer Society Press (1996)Google Scholar
  4. Alur R., Henzinger T.A. and Ho P.-H. (1996). Automatic symbolic verification of embedded systems. IEEE Trans. Softw. Eng. 22: 181–201 CrossRefGoogle Scholar
  5. Henzinger T.A., Ho P.-H. and Wong-Toi H. (1998). Algorithmic analysis of nonlinear hybrid systems. IEEE Trans. Automat. Control 43(4): 540–554 CrossRefMathSciNetzbMATHGoogle Scholar
  6. Frehse, G., Han, Z., Krogh, B.H.: Assume-guarantee reasoning for hybrid i/o-automata by over-approximation of continuous interaction. In Proc. 43rd IEEE Conf. Decision and Control (CDC’04), December 14–17, 2004, Atlantis, Bahamas (2004)Google Scholar
  7. Frehse, G.: Compositional verification of hybrid systems using simulation relations. PhD thesis, Radboud University Nijmegen (2005)Google Scholar
  8. Frehse, G., Krogh, B.H., Rutenbar, R.A., Maler, O.: Time domain verification of oscillator circuit properties. In: Maler, O. (ed.) Workshop on Formal verification of Analog Circuits (ETAPS Satellite Event), Edinburgh, Scotland, April 2–10, 2005. ENTCS, vol. 153, pp. 9–22 (2006)Google Scholar
  9. Frehse, G., Krogh, B.H., Rutenbar, R.A.: Verifying analog oscillator circuits using forward/backward refinement. In: Proc. Conf. on Design, Automation and Test in Europe (DATE 06). ACM SIGDA, Munich, Germany (2006)Google Scholar
  10. van Beek, D.A., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Formal verification of chi models using phaver. In: Troch, I., Breitenecker, F. (eds.) Proc. MathMod 2006, Vienna, ARGESIM Reports, February (2006)Google Scholar
  11. Podelski, A., Wagner, S.: Model checking of hybrid systems: From reachability towards stability. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC. LNCS, vol. 3927, pp. 507–521. Springer, Heidelberg (2006)Google Scholar
  12. Doyen, L., Henzinger, T.A., Raskin, J.-F.: Automatic rectangular refinement of affine hybrid systems. In: Proc. FORMATS’05. LNCS, vol. 3829, pp. 144–161. Springer, Heidelberg (2005)Google Scholar
  13. Ben Makhlouf, I., Kowalewski, S.: An evaluation of two recent reachability analysis tools for hybrid systems. In Proc. IFAC Conf. Analysis and Design of Hybrid Systems (ADHS’06) (2006)Google Scholar
  14. Alur R., Courcoubetis C., Halbwachs N., Henzinger T.A., Ho P.-H., Nicollin X., Olivero A., Sifakis J. and Yovine S. (1995). The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1): 3–34 CrossRefzbMATHGoogle Scholar
  15. Lynch N.A., Segala R. and Vaandrager F.W. (2003). Hybrid I/O automata. Informat. Comput. 185(1): 105–157 CrossRefMathSciNetzbMATHGoogle Scholar
  16. Cofer, D.D., Engstrom, E., Goldman, R.P., Musliner, D.J., Vestal, S.: Applications of model checking at Honeywell Laboratories. In: Dwyer, M.B. (ed.) Model Checking Software, 8th Int. SPIN Workshop, Toronto, Canada, May 19–20, 2001. LNCS, vol. 2057, pp. 296–303. Springer, Heidelberg (2001)Google Scholar
  17. Henzinger, T.A., Preussig, J., Wong-Toi, H.: Some lessons from the hytech experience. In: Proc. of the 40th Annual Conf. on Decision and Control (CDC’01), pp. 2887–2892. IEEE Press, New York (2001)Google Scholar
  18. Kowalewski S., Stursberg O., Fritz M., Graf H., Hoffmann I., Preussig J., Remelhe M., Simon S. and Treseler H. (1999). A case study in tool-aided analysis of discretely controlled continuous systems: The two tanks problem. In: Antsaklis, P.J., Kohn, W., Lemmon, M.D., Nerode, A., and Sastry, S. (eds) Hybrid Systems V. LNCS, vol. 1567., pp 163–185. Springer, Heidelberg CrossRefGoogle Scholar
  19. Tomlin, C.: Verification of an air traffic management protocol using hytech. Course Project for EE290A, taught by Prof. T. A. Henzinger, Spring 1996, Department of Electrical Engineering and Computer Sciences, University of California at Berkeley (1996)Google Scholar
  20. Henzinger, T.A., Wong-Toi, H.: Using HyTech to synthesize control parameters for a steam boiler. In: Formal Methods for Industrial Applications: Specifying and Programming the Steam Boiler Control. LNCS, vol. 1165, pp. 265–282. Springer, Heidelberg (1996)Google Scholar
  21. Müller O. and Stauner T. (2000). Modelling and verification using linear hybrid automata—a case study. Mathe. Comput. Modell. Dynam. Syst. 6(1): 71–89 CrossRefzbMATHGoogle Scholar
  22. Bagnara R., Ricci E., Zaffanella E. and Hill P.M. (2002). Possibly not closed convex polyhedra and the Parma Polyhedra Library. In: Hermenegildo, M.V. and Puebla, G. (eds) Static Analysis: Proc. of the 9th Int. Symposium. LNCS, vol. 2477, pp 213–229. Springer, Madrid Spain Google Scholar
  23. Granlund, T., Ryde, K.: The GNU Multiple Precision arithmetic library version 4.0 (2001). http://www.swox.com/gmp/
  24. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HYTECH: the next generation. In: Proc. of the 16th IEEE Real-Time Systems Symposium (RTSS ’95), p. 56. IEEE Computer Society (1995)Google Scholar
  25. Stursberg, O., Kowalewski, S.: Approximating switched continuous systems by rectangular automata. In Proc. 5th European Control Conference, Karlsruhe (1999)Google Scholar
  26. Hartong, W., Hedrich, L., Barke, E.: On discrete modeling and model checking for nonlinear analog systems. In: Brinksma, E., Larsen, K.G. (eds.) Computer Aided Verification, 14th Int. Conference, CAV 2002, Copenhagen, Denmark, July 27–31, 2002. LNCS, vol. 2404, pp. 401–413. Springer, Heidelberg (2002)Google Scholar
  27. Henzinger T.A., Horowitz B., Majumdar R. and Wong-Toi H. (2000). Beyond HYTECH: Hybrid systems analysis using interval numerical methods. In: Lynch, N.A. and Krogh, B.H. (eds) Hybrid Systems: Computation and Control, Third International Workshop, HSCC 2000, Pittsburgh, PA, USA, March 23–25, 2000 LNCS, vol. 1790., pp 130–144. Springer, Heidelberg Google Scholar
  28. Ratschan S. and She Z. (2005). Safety verification of hybrid systems by constraint propagation based abstraction refinement. In: Morari, M. and Thiele, L. (eds) Proc. of the 8th Int. Workshop on Hybrid Systems: Computation and Control LNCS, vol 3414., pp 573–589. Springer, Heidelberg Google Scholar
  29. Silva, B.I., Stursberg, O., Krogh, B.H., Engell, S.: An assessment of the current status of algorithmic approaches to the verification of hybrid systems. In Proc. 40th Conf. on Decision and Control (CDC’01), December (2001)Google Scholar
  30. Wong-Toi, H.: Symbolic approximations for verifying real-time systems, December (1994)Google Scholar
  31. Preußig, J., Kowalewski, S., Wong-Toi, H., Henzinger, T.A.: An algorithm for the approximative analysis of rectangular automata. In: Proc. of the Fifth Int. Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT). LNCS, vol. 1486, pp. 228–240. Springer, Heidelberg (1998)Google Scholar
  32. Preußig, J.: Formale Überprüfung der Korrektheit von Steuerungen mittels rektangulärer Automaten. PhD thesis, Schriftenreihe des Lehrstuhls für Anlagensteuerungstechnik Band 4/2000, Universität Dortmund, Shaker Verlag, 2000. (in German)Google Scholar
  33. Stursberg, O., Krogh, B.H.: Efficient representation and computation of reachable sets for hybrid systems. In: Maler, O., Pnueli, A. (eds.) Hybrid Systems: Computation and Control, 6th Int. Workshop, HSCC 2003 Prague, Czech Republic, April 3–5, 2003. LNCS, vol. 2623, pp. 482–497. Springer, Heidelberg (2003)Google Scholar
  34. Alur R., Courcoubetis C., Henzinger T.A. and Ho P.-H. (1993). Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., and Rischel, H. (eds) Hybrid Systems. LNCS, vol. 736., pp 209–229. Springer, Heidelberg Google Scholar
  35. Lafferriere G., Pappas G.J. and Yovine S. (2001). Symbolic reachability computation for families of linear vector fields. J. Symbolic Comput. 32: 231–253 CrossRefMathSciNetzbMATHGoogle Scholar
  36. Frehse, G.: On timed simulation relations for hybrid systems and compositionality. In: Asarin, E., Bouyer, P. (eds.) FORMATS. LNCS, vol. 4202, pp. 200–214. Springer, Heidelberg (2006). ISBN 3-540-45026-2Google Scholar
  37. Halbwachs N., Proy Y.-E. and Roumanoff P. (1997). Verification of real-time systems using linear relation analysis. Formal Methods in System Design: An Int. Journal 11(2): 157–185 CrossRefGoogle Scholar
  38. Ho, P.-H., Wong-Toi, H.: Automated analysis of an audio control protocol. In: Proc. Conf. on Computer-Aided Verification. LNCS, vol. 939, pages 381–394. Springer, Liege, Belgium (1995)Google Scholar
  39. Fehnker, A., Ivancic, F.: Benchmarks for hybrid systems verification. In: Alur, R., Pappas, G.J. (eds.) Hybrid Systems: Computation and Control, 7th Int. Workshop, HSCC 2004, Philadelphia, PA, USA, March 25–27, 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004)Google Scholar
  40. Ivancic, F.: Modeling and Analysis of Hybrid Systems. PhD thesis, University of Pennsylvania, Philadelphia, PA, December (2003)Google Scholar
  41. Bemporad, A., Morari, M.: Verification of hybrid systems via mathematical programming. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) Hybrid Systems: Computation and Control, Second International Workshop, HSCC’99, Berg en Dal, The Netherlands, March 29–31, 1999. LNCS, vol. 1569, pp. 31–45. Springer, Heidelberg (1999)Google Scholar
  42. Gupta, S., Krogh, B.H., Rutenbar, R.A.: Towards formal verification of analog designs. In: Proc. IEEE Intl. Conf. on Computer-Aided Design (ICCAD-2004), November 7–11, 2004, San Jose CA (USA)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.VERIMAGGieresFrance

Personalised recommendations