A negative result on depth-first net unfoldings

  • Javier Esparza
  • Pradeep Kanade
  • Stefan Schwoon
Formal Methods Letter


Transition System Label Transition System Reachability Problem Output Place Quadratic Complexity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baldan, P., Corradini, A., König, B.: Verifying finite-state graph grammars: an unfolding-based approach. In: Proceedings of CONCUR ’04, LNCS 3170, pp. 83–98 (2004)Google Scholar
  2. 2.
    Couvreur, J.-M., Grivet, S., Poitrenaud, D.: Unfolding of products of symmetrical Petri nets. In: Proceedings of ICATPN’01, LNCS 2075. Springer, Heidelberg (2001)Google Scholar
  3. 3.
    Couvreur, J.-M., Grivet, S., Poitrenaud, D.: Designing an LTL model-checker based on unfolding graphs. In: Proceedings of ICATPN 2000, LNCS 1825. Springer, Heidelberg (2000)Google Scholar
  4. 4.
    Esparza, J., Heljanko, K.: A new unfolding approach to LTL model checking. In: Proceedings of ICALP’00, LNCS 1853, pp. 475–486. Springer, Heidelberg, July (2000)Google Scholar
  5. 5.
    Esparza, J., Heljanko, K.: Implementing LTL model checking with net unfoldings. In: Proceedings of SPIN’01, LNCS 2057, pp. 37–56. Springer, Heidelberg, May (2001)Google Scholar
  6. 6.
    Esparza, J., Römer, S.: An unfolding algorithm for synchronous products of transition systems. In: Proceedings of CONCUR’99, LNCS 1664, pp. 2–20. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Esparza J., Römer S. and Vogler W. (2002). An improvement of McMillan’s unfolding algorithm. Form. Methods Syst. Des. 20: 285–310 zbMATHCrossRefGoogle Scholar
  8. 8.
    Khomenko V., Koutny M. and Vogler W. (2003). Canonical prefixes of Petri net unfoldings. Acta. Inform. 40(2): 95–118 zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Khomenko V., Koutny M. and Yakovlev A. (2004). Detecting state encoding conflicts in STG unfoldings using SAT. Fundamenta Informaticae 62(2): 221–241 zbMATHMathSciNetGoogle Scholar
  10. 10.
    Khomenko, V., Koutny, M., Yakovlev, A.: Logic synthesis for asynchronous circuits based on Petri net unfoldings and incremental SAT. In: Proceedings of ACSD’04. IEEE (2004)Google Scholar
  11. 11.
    McMillan, K.L.: Private communicationGoogle Scholar
  12. 12.
    McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the verification of asynchronous circuits. In: Proceedings of CAV’92, LNCS 663. Springer, Heidelberg (1993)Google Scholar
  13. 13.
    McMillan K.L. (1995). A technique of state space search based on unfolding. Form. Methods Syst. Des. 6(1): 45–65 zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    McMillan, K.L.: Trace theoretic verification of asynchronous circuits using unfoldings. In: Proceedings of CAV’95, LNCS 939. Springer, Heidelberg (1995)Google Scholar
  15. 15.
    Melzer, S., Römer, S.: Deadlock checking using net unfoldings. In: Proceedings of CAV’97, LNCS 1254 (1997)Google Scholar
  16. 16.
    Vogler,W., Semenov, A.L., Yakovlev, A.: Unfolding and finite prefix for nets with read arcs. In: Proceedings of CONCUR ’98, LNCS 1466. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Javier Esparza
    • 1
  • Pradeep Kanade
    • 2
  • Stefan Schwoon
    • 1
  1. 1.Institute for Formal Methods in Computer ScienceUniversity of StuttgartStuttgartGermany
  2. 2.Department of Computer Science and EngineeringIIT BombayMumbaiIndia

Personalised recommendations