Advertisement

A survey of recent advances in SAT-based formal verification

  • Mukul R. Prasad
  • Armin Biere
  • Aarti Gupta
Special section on Bounded Model Checking

Abstract

Dramatic improvements in SAT solver technology over the last decade and the growing need for more efficient and scalable verification solutions have fueled research in verification methods based on SAT solvers. This paper presents a survey of the latest developments in SAT-based formal verification, including incomplete methods such as bounded model checking and complete methods for model checking. We focus on how the surveyed techniques formulate the verification problem as a SAT problem and how they exploit crucial aspects of a SAT solver, such as application-specific heuristics and conflict-driven learning. Finally, we summarize the noteworthy achievements in this area so far and note the major challenges in making this technology more pervasive in industrial design verification flows.

Keywords

Verification SAT Model checking QBF ATPG 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla PA, Bjesse P, Eén N (2000) Symbolic reachability analysis based on SAT-solvers. In: Graf S, Schwartzbach M (eds) Proceedings of the 6th international conference on tools and algorithms for the construction and analysis of systems (TACAS), March 2000. Lecture notes in computer science, vol 1785. Springer, Berlin Heidelberg New York, pp 411–425Google Scholar
  2. 2.
    Abraham JA, Vedula VM, Saab DG (2002) Verifying properties using sequential ATPG. In: Proceedings of the International Test Conference (ITC), October 2002, pp 194–202Google Scholar
  3. 3.
    Alur R (1999) Timed automata. In: Halbwachs N, Peled D (eds) Proceedings of the 11th international conference on computer-aided verification (CAV), July 1999. Lecture notes in computer science, vol 1633. Springer, Berlin Heidelberg New York, pp 8–22Google Scholar
  4. 4.
    Amla N, Kurshan R, McMillan K, Medel R (2003) Experimental analysis of different techniques for bounded model checking. In: Garavel H, Hatcliff J (eds) Proceedings of the 9th international conference on tools and algorithms for the construction and analysis of systems (TACAS), April 2003. Lecture notes in computer science, vol 2619. Springer, Berlin Heidelberg New York, pp 34–48Google Scholar
  5. 5.
    Andersen HR, Hulgaard H (2002) Boolean expression diagrams. Inf Comput 179(2):194–212CrossRefGoogle Scholar
  6. 6.
    Ayari A, Basin D (2000) Bounded model construction for monadic second-order logics. In: Emerson EA, Sistla AP (eds) Proceedings of the 12th international conference on computer-aided verification (CAV), July 2000. Lecture notes in computer science, vol 1855. Springer, Berlin Heidelberg New York, pp 99–113Google Scholar
  7. 7.
    Ayari A, Basin D (2002) QUBOS: Deciding quantified Boolean logic using propositional satisfiability solvers. In: Aagard M, O’Leary JW (eds) Proceedings of the 4th international conference on formal methods in computer-aided design (FMCAD). Lecture notes in computer science, vol 2517. Springer, Berlin Heidelberg New York, pp 187–201Google Scholar
  8. 8.
    Ball T, Rajamani SK (2002) The SLAM project: debugging system soft-ware via static analysis. In: Proceedings of the 29th SIGPLAN-SIGACT symposium on principles of programming languages (POPL) January 2002. ACM Press, New York, pp 1–3Google Scholar
  9. 9.
    Barrett CW, Dill DL, Stump A (2002) Checking satisfiability of first-order formulas by incremental translation to SAT. In: Brinksma E, Larsen KG (eds) Proceedings of the 14th international conference on computer-aided verification (CAV), July 2002. Lecture notes in computer science, vol 2404. Springer, Berlin Heidelberg New York, pp 236–249Google Scholar
  10. 10.
    Baumgartner J, Kuehlmann A, Abraham JA (2002) Property Checking via Structural Analysis. In: Brinksma E, Larsen KG (eds) Proceedings of the 14th international conference on computer-aided verification (CAV), July 2002. Lecture notes in computer science, vol 2404. Springer, Berlin Heidelberg New York, pp 151–165Google Scholar
  11. 11.
    Bayardo RJ, Schrag RC (1997) Using CSP look-back techniques to solve real-world SAT instances. In: Proceedings of the national conference on artificial intelligence (AAAI), July 1997, pp 203–208Google Scholar
  12. 12.
    Le Berre D, Simon L, Tachella A (2004) Challenges in the QBF arena: the SAT’03 evaluation of QBF solvers. In: Giunchiglia E, Tacchella A (eds) Proceedings of the 6th international conference on theory and applications of satisfiability testing (SAT), May 2004. Lecture notes in computer science, vol 2919. Springer, Berlin Heidelberg New York, pp 468–485Google Scholar
  13. 13.
    Biere A (2004) Resolve and expand. In: Proceedings of the 7th international conference on theory and applications of satisfiability testing (SAT), May 2004Google Scholar
  14. 14.
    Biere A, Cimatti A, Clarke EM, Fujita M, Zhu Y (1999) Symbolic model checking using SAT procedures instead of BDDs. In: Proceedings of the 36th conference on design automation (DAC), June 1999, pp 317–320Google Scholar
  15. 15.
    Biere A, Cimatti A, Clarke EM, Zhu Y (1999) Symbolic model checking without BDDs. In: Cleaveland R (ed) Proceedings of the 5th international conference on tools and algorithms for the construction and analysis of systems (TACAS), March 1999. Lecture notes in computer science, vol 1579. Springer, Berlin Heidelberg New York, pp 193–207Google Scholar
  16. 16.
    Biere A, Clarke E, Raimi R, Zhu Y (1999) Verifying safety properties of a PowerPC microprocessor using symbolic model checking without BDDs. In: Halbwachs N, Peled D (eds) Proceedings of the 11th international conference on computer-aided verification (CAV), July 1999. Lecture notes in computer science, vol 1633. Springer, Berlin Heidelberg New York, pp 60–71Google Scholar
  17. 17.
    Biere A, Clarke EM, Zhu Y (1999) Multiple state and single state tableaux for combining local and global model checking. In: Olderog E-R, Steffen B (eds) Correct system design, recent insight and advances. Lecture notes in computer science, vol 1710. Springer, Berlin Heidelberg New York, pp 163–179Google Scholar
  18. 18.
    Bjesse P, Claessen K (2000) SAT-based verification without state space traversal. In: Hunt Jr WA, Johnson SD (eds) Proceedings of the 3rd international conference on formal methods in computer-aided design (FMCAD), November 2000. Lecture notes in computer science, vol 1954. Springer, Berlin Heidelberg New York, pp 372–389Google Scholar
  19. 19.
    Bjesse P, Leonard T, Mokkedem A (2001) Finding bugs in an alpha microprocessor using satisfiability solvers. In: Berry G, Comon H, Finkel A (eds) Proceedings of the 13th international conference on computer-aided verification (CAV), July 2001. Lecture notes in computer science, vol 2102. Springer, Berlin Heidelberg New York, pp 454–464Google Scholar
  20. 20.
    Boppana V, Rajan SP, Takayama K, Fujita M (1999) Model checking based on sequential ATPG. In: Halbwachs N, Peled D (eds) Proceedings of the 11th international conference on computer-aided verification (CAV), July 1999. Lecture notes in computer science, vol 1633. Springer, Berlin Heidelberg New York, pp 418–430Google Scholar
  21. 21.
    Bryant RE (1986) Graph based algorithms for Boolean function manipulation. IEEE Trans Comput C(35):677–691CrossRefGoogle Scholar
  22. 22.
    Burch JR, Clarke EM, Long DE, McMillan KL, Dill DL (1994) Symbolic model checking for sequential circuit verification. IEEE Trans Comput Aided Des Integ Circuits Syst 13(4):401–424CrossRefGoogle Scholar
  23. 23.
    Cabodi G, Nocco S, Quer S (2003) Improving SAT-based bounded model checking by means of BDD-based approximate traversals. In: Proceedings of Design Automation and Test in Europe (DATE), March 2003, pp 898–903Google Scholar
  24. 24.
    Cadoli M, Giovanardi A, Schaerf M (1998) An algorithm to evaluate quantified Boolean formulae. In: Proceedings of the 15th national conference on artificial intelligence (AAAI), July 1998, pp 262–267Google Scholar
  25. 25.
    Chauhan P, Clarke EM, Kukula J, Sapra S, Veith H, Wang D (2002) Automated abstraction refinement for model checking large state spaces using SAT based conflict analysis. In: Aagaard M, O’Leary JW (eds) Proceedings of the 4th international conference on formal methods in computer-aided design (FMCAD), November 2002. Lecture notes in computer science, vol 2517. Springer, Berlin Heidelberg New York, pp 33–51Google Scholar
  26. 26.
    Clarke E, Biere A, Raimi R, Zhu Y (2001) Bounded model checking using satisfiability solving. Formal Methods Syst Des 19(1):7–34CrossRefGoogle Scholar
  27. 27.
    Clarke EM, Emerson EA (1982) Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Kozen D (ed) Proceedings of the workshop on logic of programs. Lecture notes in computer science, vol 131. Springer, Berlin Heidelberg New York, pp 52–71Google Scholar
  28. 28.
    Clarke EM, Grumberg O, Peled DA (2000) Model checking. MIT Press, Cambridge, MAGoogle Scholar
  29. 29.
    Clarke EM, Gupta A, Kukula J, Strichman O (2002) SAT-based abstraction refinement using ILP and machine learning techniques. In: Brinksma E, Larsen KG (eds) Proceedings of the 14th international conference on computer-aided verification (CAV), July 2002. Lecture notes in computer science, vol 2404. Springer, Berlin Heidelberg New York, pp 265–279Google Scholar
  30. 30.
    Clarke EM, Schlingloff B-H (2001) Model checking. In: Robinson JA, Voronkov A (eds) Handbook of automated reasoning, vol 2. Elsevier/MIT Press, Amsterdam/Cambridge, MA, pp 1635–1790Google Scholar
  31. 31.
    Copti F, Fix L, Fraer R, Giunchiglia E, Kamhi G, Tacchella A, Vardi MY (2001) Benefits of bounded model checking in an industrial setting. In: Berry G, Comon H, Finkel A (eds) Proceedings of the 13th international conference on computer-aided verification (CAV), July 2001. Lecture notes in computer science, vol 2102. Springer, Berlin Heidelberg New York, pp 436–453Google Scholar
  32. 32.
    Davis M, Logemann G, Loveland D (1962) A machine program for theorem-proving. Commun ACM 5(7):394–397CrossRefGoogle Scholar
  33. 33.
    Davis M, Putnam H (1960) A computing procedure for quantification theory. J ACM 7(3):201–215CrossRefGoogle Scholar
  34. 34.
    Donini FM, Liberatore P, Massacci F, Schaerf M (2002) Solving QBF with SMV. In: Proceedings of the 8th international conference on principles of knowledge representation and reasoning (KR), pp 578–589Google Scholar
  35. 35.
    Eén N, Sörensson N (2003) Temporal induction by incremental SAT solving. In: Strichman O, Biere A (eds) Proceedings of the 1st international workshop on bounded model checking (BMC), July 2003. Electronic notes in theoretical computer science, vol 89. Elsevier, AmsterdamGoogle Scholar
  36. 36.
    Emerson EA (1990) Temporal and modal logic, vol B. MIT Press, Cambridge, MA, pp 995–1072Google Scholar
  37. 37.
    Fallah F (2002) Binary time-frame expansion. In: Proceedings of the international conference on computer-aided design (ICCAD), November 2002, pp 458–464Google Scholar
  38. 38.
    Fujiwara H, Shimono T (1983) On the acceleration of test generation algorithms. IEEE Trans Comput C-32:1137–1144Google Scholar
  39. 39.
    Ganai MK, Aziz A (2002) Improved SAT-based bounded reachability analysis. In: Proceedings of the 15th international conference on VLSI design (VLSID), January 2002, pp 729–734Google Scholar
  40. 40.
    Ganai MK, Gupta A, Ashar P (2004) Efficient SAT-based unbounded symbolic model checking using circuit cofactoring. In: Proceedings of the international conference on computer-aided design (ICCAD), November 2004Google Scholar
  41. 41.
    Ganai MK, Zhang L, Ashar P, Gupta A (2002) Combining strengths of circuit-based and CNF-based algorithms for a high performance SAT solver. In: Proceedings of the 39th conference on design automation (DAC), June 2002, pp 747–750Google Scholar
  42. 42.
    Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, San FranciscoGoogle Scholar
  43. 43.
    Giunchiglia E, Narizzano M, Tacchella A (2002) Learning for quantified Boolean logic satisfiability. In: Proceedings of the 18th national conference on artificial intelligence (AAAI), July 2002, pp 649–654Google Scholar
  44. 44.
    Goel P (1981) An implicit enumeration algorithm to generate tests for combinational logic circuits. IEEE Trans Comput C-30:215–222Google Scholar
  45. 45.
    Goldberg E, Novikov Y (2002) BerkMin: a fast and robust SAT-solver. In: Proceedings of Design Automation and Test in Europe (DATE), March 2002, pp 142–149Google Scholar
  46. 46.
    Goldberg E, Novikov Y (2003) Verification of proofs of unsatisfiability for CNF formulas. In: Proceedings of Design Automation and Test in Europe (DATE), March 2003, pp 886–891Google Scholar
  47. 47.
    Goldberg E, Prasad MR, Brayton RK (2001) Using SAT for combinational equivalence checking. In: Proceedings of Design Automation and Test in Europe (DATE), March 2001, pp 114–121Google Scholar
  48. 48.
    Gupta A, Ganai M, Wang C, Yang Z, Ashar P (2003) Abstraction and BDDs complement SAT-based BMC in DiVer. In: Hunt Jr WA, Somenzi F (eds) Proceedings of the 15th international conference on computer-aided verification (CAV), July 2003. Lecture notes in computer science, vol 2725. Springer, Berlin Heidelberg New York, pp 206–209Google Scholar
  49. 49.
    Gupta A, Ganai M, Wang C, Yang Z, Ashar P (2003) Learning from BDDs in SAT-based bounded model checking. In: Proceedings of the 40th conference on design automation (DAC), June 2003, pp 824–829Google Scholar
  50. 50.
    Gupta A, Ganai M, Yang Z, Ashar P (2003) Iterative abstraction using SAT-based BMC with proof analysis. In: Proceedings of the international conference on computer-aided design (ICCAD), November 2003, pp 416–423Google Scholar
  51. 51.
    Gupta A, Gupta A, Yang Z, Ashar P (2001) Dynamic detection and removal of inactive clauses in SAT with application in image computation. In: Proceedings of the 38th conference on design automation, June 2001, pp 536–541Google Scholar
  52. 52.
    Gupta A, Yang Z, Ashar P, Gupta A (2000) SAT based state reachability analysis and model checking. In: Hunt WA, Johnson SD (eds) Proceedings of the 3rd international conference on formal methods in computer-aided design (FMCAD), November 2000. Lecture notes in computer science, vol 1954. Springer, Berlin Heidelberg New York, pp 354–371Google Scholar
  53. 53.
    Gupta A, Yang Z, Ashar P, Zhang L, Malik S (2001) Partition-based decision heuristics for image computation using SAT and BDDs. In: Proceedings of the international conference on computer-aided design (ICCAD), November 2001, pp 286–292Google Scholar
  54. 54.
    Henzinger TA, Kupferman O, Qadeer S (1998) From pre-historic to post-modern symbolic model checking. In: Hu AJ, Vardi MY (eds) Proceedings of the 10th international conference on computer-aided verification (CAV), July 1998. Lecture notes in computer science, vol 1427. Springer, Berlin Heidelberg New York, pp 195–206Google Scholar
  55. 55.
    Holzmann GJ (1991) Design and validation of computer protocols. Prentice Hall, Upper Saddle River, NJGoogle Scholar
  56. 56.
    Huan C-Y, Cheng K-T (2001) Using word-level ATPG and modular arithmetic constraint-solving techniques for assertion property checking. IEEE Trans Comput Aided Des 20(3):381–391CrossRefGoogle Scholar
  57. 57.
    Iwashita H, Nakata T (1997) Forward model checking techniques oriented to buggy designs. In: Proceedings of the international conference on computer-aided design (ICCAD), November 1997, pp 400–404Google Scholar
  58. 58.
    Iwashita H, Nakata T, Hirose F (1996) CTL model checking based on forward state traversal. In: Proceedings of the international conference on computer-aided design (ICCAD), November 1996, pp 82–87Google Scholar
  59. 59.
    Iyer MK, Parthasarathy G, Cheng K-T (2003) SATORI – A fast sequential SAT engine for circuits. In: Proceedings of the international conference on computer-aided design (ICCAD), November 2003, pp 320–325Google Scholar
  60. 60.
    Jackson D, Vaziri M (2000) Finding bugs with a constraint solver. In: Proceedings of the international symposium on software testing and analysis (ISSTA), August 2000, pp 14–25Google Scholar
  61. 61.
    Kim J, Whittemore J, Sakallah K (2000) On solving stack-based incremental satisfiability problems. In: Proceedings of the international conference on computer design (ICCD), October 2000, pp 379–382Google Scholar
  62. 62.
    Kleine Büning H, Karpinski M, Flögel A (1995) Resolution for quantified boolean formulas. Inf Comput 117(1):12–18CrossRefGoogle Scholar
  63. 63.
    Kleine Büning H, Lettmann T (1999) Propositional logic: deduction and algorithms, Cambridge tracts in theoretical computer science, vol 48. Cambridge University Press, Cambridge, UK. ISBN-0-521-63017-7Google Scholar
  64. 64.
    Kuehlmann A, Paruthi V, Krohm F, Ganai MK (2002) Robust Boolean reasoning for equivalence checking and functional property verification. IEEE Trans Comput Aided Des Integ Circuits Syst 21(12):1377–1394CrossRefGoogle Scholar
  65. 65.
    Larrabee T (1992) Test pattern generation using Boolean satisfiability. IEEE Trans Comput Aided Des Integ Circuits Syst 11(1):4–15CrossRefGoogle Scholar
  66. 66.
    Letz R (2002) Lemma and model caching in decision procedures for quantified Boolean formulas. In: Egly U, Fermüller CG (eds) Proceedings of the international conference on automated reasoning with analytic tableaux and related methods (TABLEAUX), July 2002. Lecture notes in computer science, vol 2381. Springer, Berlin Heidelberg New YorkGoogle Scholar
  67. 67.
    Li B, Wang C, Somenzi F (2003) A satisfiability-based approach to abstraction refinement in model checking. In: Proceedings of the 1st international workshop on bounded model checking (BMC), July 2003. Electronic notes in theoretical computer science, vol 89. Elsevier, AmsterdamGoogle Scholar
  68. 68.
    Lu F, Wang L-C, Cheng K-T, Moondanos J, Hanna Z (2003) A signal correlation guided ATPG solver and its applications for solving difficult industrial cases. In: Proceedings of the 40th conference on design automation (DAC), June 2003, pp 436–441Google Scholar
  69. 69.
    Lu F, Wang L-C, Cheng K-T, Huang RC-Y (2003) A circuit SAT solver with signal correlation guided learning. In: Proceedings of Design Automation and Test in Europe (DATE), March 2003, pp 892–897Google Scholar
  70. 70.
    Marques-Silva JP (1999) The impact of branching heuristics in propositional satisfiability algorithms. In: Proceedings of the 9th Portuguese conference on artificial intelligence (EPIA), September 1999Google Scholar
  71. 71.
    Marques-Silva JP, Sakallah KA (1999) GRASP: A search algorithm for propositional satisfiability. IEEE Trans Comput 48(5):506–521MathSciNetCrossRefGoogle Scholar
  72. 72.
    McMillan KL (1993) Symbolic model checking: an approach to the state explosion problem. Kluwer, DordrechtGoogle Scholar
  73. 73.
    McMillan KL (2002) Applying SAT methods in unbounded symbolic model checking. In: Brinksma E, Larsen KG (eds) Proceedings of the 14th international conference on computer-aided verification, July 2002. Lecture notes in computer science, vol 2404. Springer, Berlin Heidelberg New York, pp 250–264Google Scholar
  74. 74.
    McMillan KL (2003) Interpolation and SAT-based model checking. In: Hunt Jr WA, Somenzi F (eds) Proceedings of the 15th conference on computer-aided verification (CAV), July 2003. Lecture notes in computer science, vol 2725. Springer, Berlin Heidelberg New York, pp 1–13Google Scholar
  75. 75.
    McMillan KL, Amla N (2003) Automatic abstraction without counterexamples. In: Garavel H, Hatcliff J (eds) Proceedings of the international conference on tools and algorithms for the construction and analysis of systems (TACAS), April 2003. Lecture notes in computer science, vol 2619. Springer, Berlin Heidelberg New York, pp 2–17Google Scholar
  76. 76.
    Mneimneh M, Sakallah K (2002) SAT-based sequential depth computation. In: Proceedings of the 1st international workshop on constraints in formal verification, September 2002Google Scholar
  77. 77.
    Moskewicz MH, Madigan CF, Zhao Y, Zhang L, Malik S (2001) Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th conference on design automation (DAC), June 2001, pp 530–535Google Scholar
  78. 78.
    Parthasarthy G, Huang C-Y, Cheng K-T (2001) An analysis of ATPG and SAT algorithms for formal verification. In: Proceedings of the 6th international workshop on high-level design validation and test (HLDVT), November 2001, pp 177–182Google Scholar
  79. 79.
    Kurshan RP (1995) Computer-aided verification of coordinating processes: the automata-theoretic approach. Princeton University Press, Princeton, NJGoogle Scholar
  80. 80.
    Plaisted D, Biere A, Zhu Y (2003) A satisfiability procedure for quantified Boolean formulae. Discrete Appl Math 130(2):291–328MathSciNetCrossRefGoogle Scholar
  81. 81.
    Plaisted D, Greenbaum S (1986) A structure-preserving clause form translation. J Symbol Comput 2(3):293–304MathSciNetCrossRefGoogle Scholar
  82. 82.
    Rintanen J (2001) Partial implicit unfolding in the Davis-Putnam procedure for quantified boolean formulae. In: International conference on logic for programming, artificial intelligence and reasoning (LPAR)Google Scholar
  83. 83.
    Savitch WJ (1970) Relational between nondeterministic and deterministic tape complexity. J Comput Syst Sci 4:177–192MathSciNetCrossRefGoogle Scholar
  84. 84.
    Schuppan V, Biere A (2004) Efficient reduction of finite state model checking to reachability analysis. Int J Softw Tools Technol Transfer 5(1–2):185–204Google Scholar
  85. 85.
    Selman B, Kautz HA, Cohen B (1994) Noise strategies for improving local search. In: Proceedings of the 12th national conference on artificial intelligence (AAAI), July 1994, pp 337–343Google Scholar
  86. 86.
    Selman B, Levesque HJ, Mitchell D (1992) A new method for solving hard satisfiability problems. In: Proceedings of the 10th national conference on artificial intelligence (AAAI), July 1992, pp 440–446Google Scholar
  87. 87.
    Seshia SA, Lahiri SK, Bryant RE (2003) A hybrid SAT-based decision procedure for separation logic with uninterpreted functions. In: Proceedings of the 40th conference on design automation (DAC), June 2003, pp 425–430Google Scholar
  88. 88.
    Shacham O, Zarpas E (2003) Tuning the VSIDS decision heuristic for bounded model checking. In: Proceedings of the 4th international workshop on microprocessor test and verification (MTV), May 2003, pp 75–79Google Scholar
  89. 89.
    Sheeran M, Singh S, Stålmarck G (2000) Checking safety properties using induction, a SAT-solver. In: Hunt Jr WA, Johnson SD (eds) Proceedings of the 3rd international conference on formal methods in computer-aided design (FMCAD), November 2000. Lecture notes in computer science, vol 1954. Springer, Berlin Heidelberg New York, pp 108–125Google Scholar
  90. 90.
    Sheeran M, Stålmarck G (2000) A tutorial on Stålmarck’s proof procedure for propositional logic. Formal Methods Syst Des 16(1):23–58CrossRefGoogle Scholar
  91. 91.
    Sheng S, Takayama K, Hsiao MS (2002) Effective static property checking using simulation-based ATPG. In: Proceedings of the 39th conference on design automation (DAC), June 2002, pp 813–818Google Scholar
  92. 92.
    Shtrichman O (2000) Sharing information between instances of propositional satisfiability (SAT) problems, January 2000. US patent (Disclosure no.: IL8-2000-0070)Google Scholar
  93. 93.
    Stockmeyer LJ, Meyer AR (1973) Word problems requiring exponential time. In: Proceedings of the 5th annual ACM symposium on the theory of computing (STOC), pp 1–9Google Scholar
  94. 94.
    Stoffel D, Kunz W (1997) Record and play: a structural fixed point iteration for sequential circuit verification. In: Proceedings of the international conference on computer-aided design (ICCAD), November 1997, pp 394–399Google Scholar
  95. 95.
    Strichman O (2000) Tuning SAT checkers for bounded model checking. In: Emerson EA, Sistla AP (eds) Proceedings of the 12th international conference on computer-aided verification (CAV), July 2000. Lecture notes in computer science, vol 1855. Springer, Berlin Heidelberg New York, pp 480–494Google Scholar
  96. 96.
    Strichman O (2001) Pruning techniques for the SAT-based bounded model checking problem. In: Margaria T, Melham TF (eds) Proceedings of the 11th advanced research working conference on correct hardware design and verification methods (CHARME), September 2001. Lecture notes in computer science, vol 2144. Springer, Berlin Heidelberg New York, pp 58–70Google Scholar
  97. 97.
    Strichman O (2002) On solving Presburger and linear arithmetic with SAT. In: Aagaard M, O’Leary JW (eds) Proceedings of the 4th international conference on formal methods in computer-aided design (FMCAD), November 2002. Lecture notes in computer science, vol 2517. Springer, Berlin Heidelberg New York, pp 160–170Google Scholar
  98. 98.
    Tseitin GS (1968) On the complexity of derivation in propositional calculus. In: Slisenko AO (ed) Studies in constructive mathematics and mathematical logic. Seminars in mathematics, vol 8. Steklov Mathematical Institute, Leningrad, Russia, pp 234–259 (English Translation: Consultants Bureau, New York, 1970, pp 115–125)Google Scholar
  99. 99.
    van Eijk CAJ (1998) Sequential equivalence checking without state space traversal. In: Proceedings of Design Automation and Test in Europe (DATE), February 1998, pp 618–623Google Scholar
  100. 100.
    Velev MN, Bryant RE (2003) Effective use of Boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors. J Symbol Comput 35(2):73–106MathSciNetCrossRefGoogle Scholar
  101. 101.
    Wang C, Li B, Jin HS, Hachtel GD, Somenzi F (2003) Improving Ariadne’s bundle by following multiple threads in abstraction refinement. In: Proceedings of the international conference on computer-aided design (ICCAD), November 2003, pp 408–415Google Scholar
  102. 102.
    Whittemore JP, Kim J, Sakallah KA (2001) SATIRE: A new incremental satisfiability engine. In: Proceedings of the 38th conference on design automation (DAC), June 2001, pp 542–545Google Scholar
  103. 103.
    Williams PF, Biere A, Clarke EM, Gupta A (2000) Combining decision diagrams and SAT procedures for efficient symbolic model checking. In: Emerson EA, Sistla AP (eds) Proceedings of the 12th international conference on computer-aided verification (CAV), July 2000. Lecture notes in computer science, vol 1855. Springer, Berlin Heidelberg New York, pp 124–138Google Scholar
  104. 104.
    Yen C-C, Chen K-C, Jou J-Y (2002) A practical approach to cycle bound estimation for property checking. In: Proceedings of 11th international workshop on logic and synthesis (IWLS), June 2002, pp 149–154Google Scholar
  105. 105.
    Zhang H (1997) SATO: An efficient propositional prover. In: McCune W (ed) Proceedings of the 14th international conference on automated deduction (CADE), July 1997. Lecture notes in computer science, vol 1249. Springer, Berlin Heidelberg New York, pp 272–275Google Scholar
  106. 106.
    Zhang L, Madigan CF, Moskewicz MH, Malik S (2001) Efficient conflict driven learning in a Boolean satisfiability solver. In: Proceedings of the international conference on computer-aided design (ICCAD), November 2001, pp 279–285Google Scholar
  107. 107.
    Zhang L, Malik S (2002) The quest for efficient Boolean satisfiability solvers. In: Brinksma E, Larsen KG (eds) Proceedings of the 14th international conference on computer-aided verification (CAV), July 2001. Lecture notes in computer science, vol 2404. Springer, Berlin Heidelberg New York, pp 17–36Google Scholar
  108. 108.
    Zhang L, Malik S (2002) Towards symmetric treatment of conflicts and satisfaction in quantified Boolean satisfiability solvers. In: Van Hentenryck P (ed) Proceedings of the 8th international conference on principles and practice of constraint programming (CP). Lecture notes in computer science, vol 2470. Springer, Berlin Heidelberg New York, pp 200–215Google Scholar
  109. 109.
    Zhang L, Malik S (2003) Validating SAT solvers using an independent resolution-based checker: practical implementations and other applications. In: Proceedings of Design Automation and Test in Europe (DATE), March 2003, pp 880–885Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Fujitsu Laboratories of AmericaSunnyvaleUSA
  2. 2.Johannes Kepler UniversityLinzAustria
  3. 3.NEC Laboratories of AmericaPrincetonUSA

Personalised recommendations