A distributed algorithm for strong bisimulation reduction of state spaces

Special section on parallel and distributed model checking

Abstract

It is a known problem that state spaces can grow very large, which makes operating on them (including reducing them) difficult because of operational memory shortage. In an attempt to extend the size of the state spaces that can be dealt with, we designed and implemented a bisimulation reduction algorithm for distributed memory settings using message passing communication. By using message passing, the same implementation can be used on both clusters of workstations and large shared memory machines. The algorithm performs reduction of large labeled transition systems modulo strong bisimulation. We justify its correctness and termination and provide an evaluation of the worst-case time and message complexity and some performance data from a prototype implementation. Both theory and practice show that the algorithm scales up with the number of workstations.

Keywords

Strong bisimulation Distributed tools State space reduction Model checking Multirelational coarsest partition problem  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Attiya H, Welch J (1998) Distributed computing: fundamentals, simulations and advanced topics. McGraw-Hill, New YorkGoogle Scholar
  2. 2.
    Balcazar JL, Gabarro J, Santha M (1992) Deciding bisimilarity is P-complete. Formal Aspects Comput 4(6A):638–648CrossRefGoogle Scholar
  3. 3.
    Barnat J, Brim L, Stříbrná J (2001) Distributed LTL model-checking in SPIN. In: Proceedings SPIN’01. Lecture notes in computer science, vol 2057. Springer, Berlin Heidelberg New York, pp 200–216Google Scholar
  4. 4.
    Behrmann G, Hune T, Vaandrager FW (2000) Distributed timed model checking – How the search order matters. In: Proceedings CAV’00. Lecture notes in computer science, vol 1855. Springer, Berlin Heidelberg New York, pp 216–231Google Scholar
  5. 5.
    Berry G, Comon H, Finkel A (eds) (2001) Proceedings CAV’01. Lecture notes in computer science, vol 2102. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. 6.
    Blom SCC, Fokkink WJ, Groote JF, van Langevelde I, Lisser B, van de Pol JC (2001) μCRL: A toolset for analysing algebraic specifications. In: Proceedings CAV’01. Lecture notes in computer science, vol 2102. Springer, Berlin Heidelberg New York, pp 250–254Google Scholar
  7. 7.
    Blom SCC, Orzan SM (2003) Distributed branching bisimulation reduction of state spaces. In: Proceedings PDMC’03. ENTCS, vol 89Google Scholar
  8. 8.
    Bollig B, Leucker M, Weber M (2001) Parallel model checking for the alternation free μ-calculus. In: Proceedings TACAS’01. Lecture notes in computer science, vol 2031. Springer, Berlin Heidelberg New York, pp 543–558Google Scholar
  9. 9.
    Carns PH, III Ligon WB, Ross RB, Thakur R (2000) PVFS: A parallel file system for Linux clusters. In: Proceedings 4th annual Linux showcase and conference, pp 317–327Google Scholar
  10. 10.
    Caselli S, Conte G, Marenzoni P (2001) A distributed algorithm for GSPN reachability graph generation. J Parallel Distrib Comput 61(1):79–95CrossRefGoogle Scholar
  11. 11.
    Ciardo G (2001) Distributed and structured analysis approaches to study large and complex systems. In: Lectures on Formal methods and performance analysis: 1st EEF/Euro summer school on trends in computer science. Lecture notes in computer science, vol 2090. Springer, Berlin Heidelberg New York, pp 244–274Google Scholar
  12. 12.
    CWI/SEN2, INRIA/VASY (2003) The VLTS benchmark. http://www.inrialpes.fr/vasy/cadp/resources/benchmark_bcg.htmlGoogle Scholar
  13. 13.
    Fernandez J-C (1990) An implementation of an efficient algorithm for bisimulation equivalence. Sci Comput Programm 13(2–3):219–236Google Scholar
  14. 14.
    Fernandez J-C, Garavel H, Kerbrat A, Mounier L, Mateescu R, Sighireanu M (1996) CADP – a protocol validation and verification toolbox. In: Proceedings CAV’96. Lecture notes in computer science, vol 1102, pp 437–440Google Scholar
  15. 15.
    Garavel H, Mateescu R, Smarandache I (2001) Parallel state space construction for model-checking. In: Proceedings SPIN’01. Lecture notes in computer science, vol 2057. Springer, Berlin Heidelberg New York, pp 217–234Google Scholar
  16. 16.
    Groote JF, Pang J, Wouters AG (2003) Analyzing a distributed system for lifting trucks. J Logic Algebr Programm 55(1–2):21–56Google Scholar
  17. 17.
    Grumberg O, Heyman T, Schuster A (2001) Distributed symbolic model checking for μ-calculus. In: Berry et al. [5], pp 350–362Google Scholar
  18. 18.
    Jeong C, Kim Y, Oh Y, Kim H (1998) A faster parallel implementation of Kanellakis-Smolka algorithm for bisimilarity checking. In: Proceedings of the international computer symposiumGoogle Scholar
  19. 19.
    Kanellakis PC, Smolka SA (1983) CCS expressions, finite state processes and three problems of equivalence. In: Proceedings 2nd annual ACM symposium on principles of distributed computing, pp 228–240Google Scholar
  20. 20.
    Lerda F, Sisto R (1999) Distributed-memory model checking with SPIN. In: Proceedings SPIN’00. Lecture notes in computer science, vol 1680. Springer, Berlin Heidelberg New YorkGoogle Scholar
  21. 21.
    Leucker M, Noll T (2001) Truth/SLC – A parallel verification platform for concurrent systems. In: Berry et al. [5], pp 255–259Google Scholar
  22. 22.
    Luttik SP (1997) Description and formal specification of the Link Layer of P1394. In: Proceedings 2nd international workshop on applied formal methods in system designGoogle Scholar
  23. 23.
    Paige R, Tarjan R (1987) Three partition refinement algorithms. SIAM J Comput 16(6):973–989MathSciNetCrossRefGoogle Scholar
  24. 24.
    Pang J, Fokkink WJ, Hofman R, Veldema R (2003) Model checking a cache coherence protocol for a Java DSM implementation. In: Proceedings FMPPTA’03Google Scholar
  25. 25.
    Rajasekaran S, Lee I (1998) Parallel algorithms for relational coarsest partition problems. IEEE Trans Parallel Distrib Syst 9(7):687–699CrossRefGoogle Scholar
  26. 26.
    Shankland C, van der Zwaag M (1998) The tree identify protocol of IEEE 1394 in μCRL. Formal Aspects Comput 10:509–531CrossRefGoogle Scholar
  27. 27.
    Stern U, Dill D (1997) Parallelizing the Murφ verifier. In: Proceedings CAV’97. Lecture notes in computer science, vol 1254. Springer, Berlin Heidelberg New York, pp 256–278Google Scholar
  28. 28.
    Zhang S, Smolka SA (1993) Towards efficient parallelization of equivalence checking algorithms. In: Proceedings FORTE’92, IFIP Transactions, C-10 :133–146Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.CWIAmsterdamThe Netherlands

Personalised recommendations