Skip to main content
Log in

Electrochemical, EPR, and computational study of pyrene conjugates—precursors for novel type of organic semiconductors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A series of nine precursors for pyrene-based biodegradable organic (semi)conductors having tetrasubstituted double bond as a central organic core and photo- or redox active centers attached at this core were investigated electrochemically in aprotic media at various electrodes. The influence of individual parts of the molecule on the redox properties were determined, the radical intermediates were intercepted using in situ EPR spectroelectrochemical experiments, the respective mechanisms were discussed, the difference between the first oxidation and the first reduction potential, respectively, were determined, and the experimental data were correlated with quantum chemical calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Horowitz G (1998) Organic field-effect transistors. Adv Mater 10(5):365–377. https://doi.org/10.1002/(sici)1521-4095(199803)10:5%3c365::Aid-adma365%3e3.0.Co;2-u

    Article  CAS  Google Scholar 

  2. Bao ZN, Rogers JA, Katz HE (1999) Printable organic and polymeric semiconducting materials and devices. J Mater Chem 9:1895–1904. https://doi.org/10.1039/a902652e

    Article  CAS  Google Scholar 

  3. Dimitrakopoulos CD, Malenfant PRL (2002) Organic thin film transistors for large area electronics. Adv Mater 14(2):99–117. https://doi.org/10.1002/1521-4095(20020116)14:2%3c99::AID-ADMA99%3e3.0.CO;2-9

    Article  CAS  Google Scholar 

  4. Dimitrakopoulos CD (2003) Vacuum-deposited organic thin-film field-effect transistors based on small molecules, Thin-film transistors: pp. 333–375

  5. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347(6293):539–541. https://doi.org/10.1038/347539a0

    Article  CAS  Google Scholar 

  6. Kovac J, Peternai L, Lengyel O (2003) Advanced light emitting diodes structures for optoelectronic applications. Thin Solid Films 433(1–2):22–26. https://doi.org/10.1016/s0040-6090(03)00314-6

    Article  CAS  Google Scholar 

  7. Brabec CJ, Sariciftci NS, Hummelen JC (2001) Plastic solar cells. Adv Funct Mater 11(1):15–26. https://doi.org/10.1002/1616-3028(200102)11:1%3c15::AID-ADFM15%3e3.0.CO;2-A

    Article  CAS  Google Scholar 

  8. Coakley KM, McGehee MD (2004) Conjugated polymer photovoltaic cells. Chem Mater 16(23):4533–4542. https://doi.org/10.1021/cm049654n

    Article  CAS  Google Scholar 

  9. Crone B, Dodabalapur A, Gelperin A, Torsi L, Katz HE, Lovinger AJ, Bao Z (2001) Electronic sensing of vapors with organic transistors. App Phys Lett 78(15):2229–2231. https://doi.org/10.1063/1.1360785

    Article  CAS  Google Scholar 

  10. Someya T, Katz HE, Gelperin A, Lovinger AJ, Dodabalapur A (2002) Vapor sensing with alpha, omega-dihexylquarterthiophene field-effect transistors: The role of grain boundaries. App Phys Lett 81(16):3079–3081. https://doi.org/10.1063/1.1514826

    Article  CAS  Google Scholar 

  11. Brown AR, Pomp A, Hart CM, Deleeuw DM (1995) Logic gates made from polymer transistors and their use in ring oscillators. Science 270(5238):972–974. https://doi.org/10.1126/science.270.5238.972

    Article  CAS  Google Scholar 

  12. Crone B, Dodabalapur A, Lin YY, Filas RW, Bao Z, LaDuca A, Sarpeshkar R, Katz HE, Li W (2000) Large-scale complementary integrated circuits based on organic transistors. Nature 403(6769):521–523. https://doi.org/10.1038/35000530

    Article  CAS  PubMed  Google Scholar 

  13. Drury CJ, Mutsaers CMJ, Hart CM, Matters M, de Leeuw DM (1998) Low-cost all-polymer integrated circuits. App Phys Lett 73(1):108–110. https://doi.org/10.1063/1.121783

    Article  CAS  Google Scholar 

  14. Figueira-Duarte TM, Mullen K (2011) Pyrene-based materials for organic electronics. Chem Rev 111(11):7260–7314. https://doi.org/10.1021/cr100428a

    Article  CAS  PubMed  Google Scholar 

  15. Kotek V, Dvorakova H, Tobrman T (2015) Modular and highly stereoselective approach to all-carbon tetrasubstituted alkenes. Org Lett 17(3):608–611. https://doi.org/10.1021/ol503624v

    Article  CAS  PubMed  Google Scholar 

  16. Kotek V, Polak P, Dvorakova H (2016) Tobrman T (2016) Aluminum chloride promoted cross-coupling of trisubstituted enol phosphates with organozinc reagents en route to the stereoselective synthesis of tamoxifen and its analogues. Eur J Org Chem 29:5037–5044. https://doi.org/10.1002/ejoc.201600959

    Article  CAS  Google Scholar 

  17. Liu Y, Lv Y, Xi H, Zhang X, Chen S, Lam JWY, Kwok RTK, Mahtab F, Kwok HS, Tao X, Tang BZ (2013) Enlarged tetrasubstituted alkenes with enhanced thermal and optoelectronic properties. Chem Commun 49(65):7216. https://doi.org/10.1039/c3cc43386b

    Article  CAS  Google Scholar 

  18. Jones BA, Ahrens MJ, Yoon MH, Facchetti A, Marks TJ, Wasielewski MR (2004) High-mobility air-stable n-type semiconductors with processing versatility: Dicyanoperylene-3,4: 9,10-bis(dicarboximides). Angew Chem Int Ed 43(46):6363–6366. https://doi.org/10.1002/anie.200461324

    Article  CAS  Google Scholar 

  19. Hashikawa Y, Murata M, Wakamiya A, Murata Y (2017) Palladium-catalyzed cyclization: Regioselectivity and structure of arene-fused c-60 derivatives. J Am Chem Soc 139(45):16350–16358. https://doi.org/10.1021/jacs.7b09459

    Article  CAS  PubMed  Google Scholar 

  20. Figueira-Duarte TM, Simon SC, Wagner M, Drtezhinin SI, Zachariasse KA, Mullen K (2008) Polypyrene dendrimers Angew Chem Int Ed 47(52):10175–10178. https://doi.org/10.1002/anie.200803408

    Article  CAS  Google Scholar 

  21. Polak P (2019) Tobrman T (2019) Novel selective approach to terminally substituted n dendralenes. Eur J Org Chem 5:957–968. https://doi.org/10.1002/ejoc.201801522

    Article  CAS  Google Scholar 

  22. Liska A, Vojtisek P, Fry AJ, Ludvik J (2013) Electrochemical and quantum chemical investigation of tetranitrocalix[4]arenes: Molecules with multiple redox centers. J Org Chem 78(21):10651–10656. https://doi.org/10.1021/jo4015613

    Article  CAS  PubMed  Google Scholar 

  23. Klima J, Volke J, Urban J (1991) Elucidation of mechanisms of organic electrode processes by spin trapping - electroreduction of substituted pyrylium cations. Electrochim Acta 36(1):73–77. https://doi.org/10.1016/0013-4686(91)85181-6

    Article  CAS  Google Scholar 

  24. Klamt A, Schuurmann G (1993) Cosmo: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc, Perkin Trans 2(5):799–805. https://doi.org/10.1039/p29930000799

    Article  Google Scholar 

  25. Amovilli C, Barone V, Cammi R, Cancès E, Cossi M, Mennucci B, Pomelli CS, Tomasi J (1998) Recent advances in the description of solvent effects with the polarizable continuum model. Adv Quantum Chem 32:227–261. https://doi.org/10.1016/S0065-3276(08)60416-5

    Article  Google Scholar 

  26. Shields GC, Seybold PG (2013) Computational approaches for the prediction of pka values. CRC Press

    Book  Google Scholar 

  27. Becke AD (1993) Density-functional thermochemistry. Iii. The role of exact exchange. J Chem Phys 98(7):5648–5652. https://doi.org/10.1063/1.464913

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Gaussian 16 (2016) revision b.01, Gaussian Inc., Wallingford CT

  29. Bartmess JE (1994) Thermodynamics of the electron and the proton. J Phys Chem 98(25):6420–6424. https://doi.org/10.1021/j100076a029

    Article  CAS  Google Scholar 

  30. Anowski S, Voss J (1996) Electroreduction of organic compounds. 28. Partial hydrogenation of polycyclic aromatic hydrocarbons by electroreduction in protic solvents. J Prakt Chem /Chem-Ztg 338(4):337–344. https://doi.org/10.1002/prac.19963380166

  31. Fry AJ, Britton WE (1986) Topics in organic electrochemistry. Plenum Press, New York

    Book  Google Scholar 

  32. Fry AJ (1989) Synthetic organic electrochemistry, 2nd edn. John Wiley and Sons, New York

    Google Scholar 

  33. Kariv-Miller E, Pacut RI, Lehman GK (1988) Organic electroreductions at very negative potentials. Top Curr Chem 14:897–130

    Google Scholar 

  34. Cabral LIL, Henriques MSC, Paixao JA, Cristiano MLS (2017) Synthesis and structure of 2-substituted pyrene-derived scaffolds. Tetrahedron Lett 58(48):4547–4550. https://doi.org/10.1016/j.tetlet.2017.10.058

    Article  CAS  Google Scholar 

  35. Casas-Solvas JM, Howgego JD, Davis AP (2014) Synthesis of substituted pyrenes by indirect methods. Org Biomol Chem 12(2):212–232. https://doi.org/10.1039/c3ob41993b

    Article  CAS  PubMed  Google Scholar 

  36. Lin QA, Shimizu K, Satsuma A (2010) Hydrogenation of pyrene using pd catalysts supported on tungstated metal oxides. Appl Catal, A-Gen 387(1–2):166–172. https://doi.org/10.1016/j.apcata.2010.08.014

    Article  CAS  Google Scholar 

  37. Bauld NL, Cessac J, Chang CS, Farr FR, Holloway R (1976) The cyclobutene/butadiene anion radical electrocyclic reaction. J Am Chem Soc 98(15):4561–4567. https://doi.org/10.1021/ja00431a038

    Article  CAS  Google Scholar 

  38. Bohm A, Meerholz K, Heinze J, Mullen K (1992) Electron-transfer-induced valence isomerization of 2,2′-distyrylbiphenyl. J Am Chem Soc 114(2):688–699. https://doi.org/10.1021/ja00028a042

    Article  Google Scholar 

Download references

Acknowledgements

Computational resources were supplied by the project “e-Infrastruktura CZ” (e-INFRA LM2018140) provided within the program Projects of Large Research, Development, and Innovations Infrastructures.

Funding

The authors are grateful to the grant GAČR 18–12150 S for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Ludvík.

Additional information

This contribution is dedicated to my good friend and colleague prof. Fritz Scholz with best wishes for further years.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koláčná, L., Klíma, J., Polák, P. et al. Electrochemical, EPR, and computational study of pyrene conjugates—precursors for novel type of organic semiconductors. J Solid State Electrochem 26, 503–514 (2022). https://doi.org/10.1007/s10008-021-05094-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05094-7

Keywords

Navigation