Skip to main content
Log in

Aluminum-ion battery technology: a rising star or a devastating fall?

  • Feature Article
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Bórawski P, Bełdycka-Bórawska A, Szymańska EJ, Jankowski KJ, Dubis B, Dunn JW (2019) Development of renewable energy sources market and biofuels in the European Union. J Clean Prod 228:467–484. https://doi.org/10.1016/j.jclepro.2019.04.242

    Article  Google Scholar 

  2. Del Río P (2017) Why does the combination of the European Union emissions trading scheme and a renewable energy target makes economic sense? Renew Sust Energ Rev 74:824–834. https://doi.org/10.1016/j.rser.2017.01.122

    Article  Google Scholar 

  3. Saint Akadiri S, Alola AA, Akadiri AC, Alola UV (2019) Renewable energy consumption in EU-28 countries: policy toward pollution mitigation and economic sustainability. Energy Policy 132:803–810. https://doi.org/10.1016/j.enpol.2019.06.040

    Article  Google Scholar 

  4. Ourahou M, Ayrir W, El Hassouni B, Haddi A (2020) Review on smart grid control and reliability in presence of renewable energies: challenges and prospects. Math Comput Simul 167:19–31. https://doi.org/10.1016/j.matcom.2018.11.009

    Article  Google Scholar 

  5. Matos CR, Carneiro JF, Silva PP (2019) Overview of large-scale underground energy storage technologies for integration of renewable energies and criteria for reservoir identification. J Energy Storage 21:241–258. https://doi.org/10.1016/j.est.2018.11.023

    Article  Google Scholar 

  6. Choi JW, Aurbach D (2016) Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev 1(4):16013. https://doi.org/10.1038/natrevmats.2016.13

    Article  CAS  Google Scholar 

  7. Nykvist B, Nilsson M (2015) Rapidly falling costs of battery packs for electric vehicles. Nat Clim Chang 5(4):329–332. https://doi.org/10.1038/NCLIMATE2564

    Article  Google Scholar 

  8. Walter M, Kovalenko MV, Kravchyk KV (2020) Challenges and benefits of post-lithium-ion batteries. New J Chem 44(5):1677–1683. https://doi.org/10.1039/c9nj05682c

    Article  CAS  Google Scholar 

  9. Duan J, Tang X, Haifeng D et al (2020) Building safe lithium-ion batteries for electric vehicles: a review. Electrochem Energy Rev 3(1):1–42. https://doi.org/10.1007/s41918-019-00060-4

    Article  CAS  Google Scholar 

  10. Leisegang T, Meutzner F, Zschornak M, Münchgesang W, Schmid R, Nestler T, Eremin RA, Kabanov AA, Blatov VA, Meyer DC (2019) The aluminum-ion battery: a sustainable and seminal concept? Front Chem 7:268. https://doi.org/10.3389/fchem.2019.00268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ponrouch A, Palacín MR (2019) Post-Li batteries: promises and challenges. Phil Trans R Soc A 377(2152):20180297. https://doi.org/10.1098/rsta.2018.0297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aurbach D, Gofer Y, Lu Z et al (2001) A short review on the comparison between Li battery systems and rechargeable magnesium battery technology. J Power Sources 97–98:28–32. https://doi.org/10.1016/S0378-7753(01)00585-7

    Article  Google Scholar 

  13. Huie MM, Bock DC, Takeuchi ES, Marschilok AC, Takeuchi KJ (2015) Cathode materials for magnesium and magnesium-ion based batteries. Coord Chem Rev 287:15–27. https://doi.org/10.1016/j.ccr.2014.11.005

    Article  CAS  Google Scholar 

  14. Massé RC, Uchaker E, Cao G (2015) Beyond Li-ion: electrode materials for sodium-and magnesium-ion batteries. Sci China Mater 58(9):715–766. https://doi.org/10.1007/s40843-015-0084-8

    Article  CAS  Google Scholar 

  15. Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407(6805):724–727. https://doi.org/10.1038/35037553

    Article  CAS  PubMed  Google Scholar 

  16. Foot PJS (2015) Principles and prospects of high-energy magnesium-ion batteries. Sci Prog 98(3):264–275. https://doi.org/10.3184/003685015X14388749247375

    Article  CAS  PubMed  Google Scholar 

  17. Kulish VV, Manzhos S (2017) Comparison of Li, Na, Mg and Al-ion insertion in vanadium pentoxides and vanadium dioxides. RSC Adv 7(30):18643–18649. https://doi.org/10.1039/c7ra02474f

    Article  CAS  Google Scholar 

  18. Li Q, Bjerrum NJ (2002) Aluminum as anode for energy storage and conversion: a review. J Power Sources 110(1):1–10. https://doi.org/10.1016/S0378-7753(01)01014-X

    Article  CAS  Google Scholar 

  19. Pagliaro M, Meneguzzo F (2019) Lithium battery reusing and recycling: a circular economy insight. Heliyon 5(6):e01866. https://doi.org/10.1016/j.heliyon.2019.e01866

    Article  PubMed  PubMed Central  Google Scholar 

  20. Casals LC, Amante García B, Canal C (2019) Second life batteries lifespan: rest of useful life and environmental analysis. J Environ Manag 232:354–363. https://doi.org/10.1016/j.jenvman.2018.11.046

    Article  Google Scholar 

  21. Nestler T, Fedotov S, Leisegang T, Meyer DC (2019) Towards Al3+ mobility in crystalline solids: critical review and analysis. Crit Rev Solid State Mater Sci 44(4):298–323. https://doi.org/10.1080/10408436.2018.1490248

    Article  CAS  Google Scholar 

  22. Yang H, Yin L, Liang J, Sun Z, Wang Y, Li H, He K, Ma L, Peng Z, Qiu S, Sun C, Cheng HM, Li F (2018) An aluminum-sulfur battery with a fast kinetic response. Angew Chem Int Ed 57(7):1898–1902. https://doi.org/10.1002/anie.201711328

    Article  CAS  Google Scholar 

  23. Cohn G, Ma L, Archer LA (2015) A novel non-aqueous aluminum sulfur battery. J Power Sources 283:416–422. https://doi.org/10.1016/j.jpowsour.2015.02.131

    Article  CAS  Google Scholar 

  24. Tian H, Zhang S, Meng Z, He W, Han WQ (2017) Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett 2(5):1170–1176. https://doi.org/10.1021/acsenergylett.7b00160

    Article  CAS  Google Scholar 

  25. Zhang S, Tan X, Meng Z, Tian H, Xu F, Han WQ (2018) Naturally abundant high-performance rechargeable aluminum/iodine batteries based on conversion reaction chemistry. J Mater Chem A 6(21):9984–9996. https://doi.org/10.1039/c8ta00675j

    Article  CAS  Google Scholar 

  26. Doche ML, Novel-Cattin F, Durand R, Rameau JJ (1997) Characterization of different grades of aluminum anodes for aluminum/air batteries. J Power Sources 65(1-2):197–205. https://doi.org/10.1016/S0378-7753(97)02473-7

    Article  CAS  Google Scholar 

  27. Levy NR, Auinat M, Ein-Eli Y (2018) Tetra-butyl ammonium fluoride – an advanced activator of aluminum surfaces in organic electrolytes for aluminum-air batteries. Energy Storage Mater 15:465–474. https://doi.org/10.1016/j.ensm.2018.08.025

    Article  Google Scholar 

  28. Levy NR, Lifshits S, Yohanan E, Ein-Eli Y (2020) Hybrid ionic liquid propylene carbonate-based electrolytes for aluminum−air batteries. ACS Appl Energy Mater 3(3):2585–2592. https://doi.org/10.1021/acsaem.9b02288

    Article  CAS  Google Scholar 

  29. Gelman D, Shvartsev B, Ein-Eli Y (2014) Aluminum–air battery based on an ionic liquid electrolyte. J Mater Chem A 2(47):20237–20242. https://doi.org/10.1039/C4TA04721D

    Article  CAS  Google Scholar 

  30. Gelman D, Shvartsev B, Wallwater I, Kozokaro S, Fidelsky V, Sagy A, Oz A, Baltianski S, Tsur Y, Ein-Eli Y (2017) An aluminum - ionic liquid interface sustaining a durable Al-air battery. J Power Sources 364:110–120. https://doi.org/10.1016/j.jpowsour.2017.08.014

    Article  CAS  Google Scholar 

  31. Bogolowski N, Drillet J-F (2017) An electrically rechargeable Al-air battery with aprotic ionic liquid electrolyte. Electrochem Soc 75(22):85–92. https://doi.org/10.1149/07522.0085ecst

    Article  CAS  Google Scholar 

  32. Egan DR, Ponce De León C, Wood RJK et al (2013) Developments in electrode materials and electrolytes for aluminium-air batteries. J Power Sources 236:293–310. https://doi.org/10.1016/j.jpowsour.2013.01.141

    Article  CAS  Google Scholar 

  33. Jayaprakash N, Das SK, Archer LA (2011) The rechargeable aluminum-ion battery. Chem Commun 47(47):12610–12612. https://doi.org/10.1039/c1cc15779e

    Article  CAS  Google Scholar 

  34. Lee B, Lee HR, Yim T, Kim JH, Lee JG, Chung KY, Cho BW, Oh SH (2016) Investigation on the structural evolutions during the insertion of aluminum ions into Mo6S8 Chevrel phase. J Electrochem Soc 163(6):A1070–A1076. https://doi.org/10.1149/2.0011607jes

    Article  CAS  Google Scholar 

  35. Lahan H, Das SK (2019) Al3+ ion intercalation in MoO3 for aqueous aluminum-ion battery. J Power Sources 413:134–138. https://doi.org/10.1016/j.jpowsour.2018.12.032

    Article  CAS  Google Scholar 

  36. Levitin G, Yarnitzky C, Licht S (2002) Fluorinated graphites as energetic cathodes for nonaqueous Al batteries. Electrochem Solid-State Lett 5(7):A160–A163. https://doi.org/10.1149/1.1481797͔

    Article  CAS  Google Scholar 

  37. Reed LD, Ortiz SN, Xiong M, Menke EJ (2015) A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte. Chem Commun 51(76):14397–14400. https://doi.org/10.1039/c5cc06053b

    Article  CAS  Google Scholar 

  38. Reed LD, Menke E (2013) The roles of V2O5 and stainless steel in rechargeable Al-ion batteries. J Electrochem Soc 160(6):915–917. https://doi.org/10.1149/2.114306jes

    Article  CAS  Google Scholar 

  39. Gao Y, Zhu C, Chen Z, Lu G (2017) Understanding ultrafast rechargeable aluminum-ion battery from first-principles. J Phys Chem C 121(13):7131–7138. https://doi.org/10.1021/acs.jpcc.7b00888

    Article  CAS  Google Scholar 

  40. Jung SC, Kang Y-J, Han Y-K, Han Y-K (2017) Comments on “Geometry and fast diffusion of AlCl4 cluster intercalated in graphite [Electrochim. Acta 195 (2016) 158–165].”. Electrochim Acta 223:135–136. https://doi.org/10.1016/j.electacta.2016.11.040

    Article  CAS  Google Scholar 

  41. Wang S, Kravchyk KV, Krumeich F, Kovalenko MV (2017) Kish graphite flakes as a cathode material for an aluminum chloride−graphite battery. ACS Appl Mater Interfaces 9(34):28478–28485. https://doi.org/10.1021/acsami.7b07499

    Article  CAS  PubMed  Google Scholar 

  42. Jiao H, Wang C, Tu J, Tian D, Jiao S (2017) A rechargeable Al-ion battery: Al/molten AlCl 3-urea/graphite. Chem Commun 53(15):2331–2334. https://doi.org/10.1039/c6cc09825h

    Article  CAS  Google Scholar 

  43. Lin M-C, Gong M, Lu B, Wu Y, Wang DY, Guan M, Angell M, Chen C, Yang J, Hwang BJ, Dai H (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520(7547):325–328. https://doi.org/10.1038/nature14340

    Article  CAS  PubMed  Google Scholar 

  44. Wang D-Y, Wei C-Y, Lin M-C, Pan CJ, Chou HL, Chen HA, Gong M, Wu Y, Yuan C, Angell M, Hsieh YJ, Chen YH, Wen CY, Chen CW, Hwang BJ, Chen CC, Dai H (2017) Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nat Commun 8(1):14283. https://doi.org/10.1038/ncomms14283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu X, Wang B, Gong D, Xu Z, Lu B (2017) Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries. Adv Mater 29(4):1604118. https://doi.org/10.1002/adma.201604118

    Article  CAS  Google Scholar 

  46. Takami N, Koura N (1988) Anodic sulfidation of FeS electrode in a NaCl saturated AlCl3-NaCl melt. Electrochem Acta 33(8):1137–1142. https://doi.org/10.1016/0013-4686(88)80205-6

    Article  CAS  Google Scholar 

  47. Geng L, Lv G, Xing X, Guo J (2015) Reversible electrochemical intercalation of aluminum in Mo6S8. Chem Mater 27(14):4926–4929. https://doi.org/10.1021/acs.chemmater.5b01918

    Article  CAS  Google Scholar 

  48. Li Z, Niu B, Liu J, Li J, Kang F (2018) Rechargeable aluminum-ion battery based on MoS2 microsphere cathode. ACS Appl Mater Interfaces 10(11):9451–9459. https://doi.org/10.1021/acsami.8b00100

    Article  CAS  PubMed  Google Scholar 

  49. Rani JV, Kanakaiah V, Dadmail T et al (2013) Fluorinated natural graphite cathode for rechargeable ionic liquid based aluminum-ion battery. J Electrochem Soc 160(10):A1781–A1784. https://doi.org/10.1149/2.072310jes

    Article  CAS  Google Scholar 

  50. Liu S, Pan GL, Li GR, Gao XP (2015) Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries. J Mater Chem A 3(3):959–962. https://doi.org/10.1039/c4ta04644g

    Article  CAS  Google Scholar 

  51. Sun H, Wang W, Yu Z, Yuan Y, Wang S, Jiao S (2015) A new aluminium-ion battery with high voltage, high safety and low cost. Chem Commun 51(59):11892–11895. https://doi.org/10.1039/c5cc00542f

    Article  CAS  Google Scholar 

  52. Yu Z, Kang Z, Hu Z, Lu J, Zhou Z, Jiao S (2016) Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries. Chem Commun 52(68):10427–10430. https://doi.org/10.1039/c6cc05974k

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge the financial support from the Israel Council for Higher Education (CHE) and Israel Fuel Choice Initiative, within the framework of the “Israel National Research Center for Electrochemical Propulsion” (INREP) and the Grand Technion Energy Program (GTEP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yair Ein-Eli.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levy, N.R., Ein-Eli, Y. Aluminum-ion battery technology: a rising star or a devastating fall?. J Solid State Electrochem 24, 2067–2071 (2020). https://doi.org/10.1007/s10008-020-04598-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04598-y

Navigation