Advertisement

Inhibition of the oxygen evolution reaction during titanium passivation in aqueous phosphoric acid solution

  • Renata Leal Saldanha
  • Bhetina Cunha Gomes
  • Gabriel da Rocha Torres
  • Brenda Raffaela de Lima
  • José Adilson de Castro
  • Ladário da Silva
  • Elivelton Alves FerreiraEmail author
Original Paper
  • 40 Downloads

Abstract

The anodic oxide on titanium can be thickened by anodization, with the consequent corrosion properties of this oxide depending on many variables, including the electrochemical perturbation, the final growth potential, and the nature of the electrolyte. During this anodization, an oxygen evolution reaction (OER) is frequently observed, contributing to reduction of the current efficiency of anodic oxide formation. Based on these factors, evaluation was made of the effect of the electrolyte on oxide film formation and inhibition of the OER during Ti anodization in aqueous H3PO4 and H2SO4 solutions with pH 1. The oxide films were grown by voltammetry and were characterized by electrochemical impedance spectroscopy (EIS) and the Mott-Schottky method. Interpretation of the electrochemical results indicated that inhibition of the OER was due to the adsorption of PO43− ions and their incorporation during growth of the oxide film. The EIS results showed that the oxide films formed in H3PO4 solution were also the most corrosion resistant.

Keywords

Anodic oxide Oxygen evolution reaction Impedance Mott-Schottky Electrolyte incorporation 

Notes

Funding information

The authors would like to thank the Brazilian funding agency CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for the financial support.

References

  1. 1.
    Schultze JW, Lohrengel MM (2000) Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochim Acta 45:2499–2513CrossRefGoogle Scholar
  2. 2.
    Blackwood DJ, Peter LM, Williams DE (1988) Stability and open circuit breakdown of the passive oxide film on titanium. Electrochim Acta 33:1143–1149CrossRefGoogle Scholar
  3. 3.
    Sul Y-T, Johansson CB, Jeong Y, Albrektsson T (2001) The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys 23(5):329–346PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed 50(13):2904–2939PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Nguyen T-DT, Park I-S, Lee M-H, Bae T-S (2013) Enhanced biocompatibility of a pre-calcified nanotubular TiO2 layer on Ti–6Al–7Nb alloy. Surf Coat Technol 236:127–134CrossRefGoogle Scholar
  6. 6.
    Mohsen Q, Fadl-Allah SA (2011) Improvement in corrosion resistance of commercial pure titanium for the enhancement of its biocompatibility. Mater Corros 62:310–319CrossRefGoogle Scholar
  7. 7.
    Mohammed MT, Khan ZA, Siddiquee AN (2014) Surface modifications of titanium materials for developing corrosion behavior in human body environment: a review. Procedia Mater Sci 6:1610–1618CrossRefGoogle Scholar
  8. 8.
    Shahali H, Jaggessar A, Yarlagadda PK (2017) Recent advances in manufacturing and surface modification of titanium orthopaedic applications. Procedia Engineering 174:1067–1076CrossRefGoogle Scholar
  9. 9.
    Ibrahim MZ, Sarhan AAD, Yusuf F, Hamdi M (2017) Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants – a review article. J Alloys Compd 714:636–667CrossRefGoogle Scholar
  10. 10.
    Ohtsu N, Bai M, Yamaguchi K (2019) Anomalous anodic layer growth on titanium occurring in electrolyte comprising nitrate and water. Surf Coat Technol 374:65–71CrossRefGoogle Scholar
  11. 11.
    Wu S, Wang S, Liu W et al (2019) Microstructure and properties of TiO2 nanotube coatings on bone plate surface fabrication by anodic oxidation. Surf Coat Technol 374:362–373CrossRefGoogle Scholar
  12. 12.
    Liu ZJ, Zhong X, Walton J, Thompson GE (2016) Anodic film growth of titanium oxide using the 3-electrode electrochemical technique: effects of oxygen evolution and morphological characterizations. J Electrochem Soc 163:E75–E82CrossRefGoogle Scholar
  13. 13.
    Ferreira EA, Rocha-Filho RC, Biaggio SR, Bocchi N (2010) Corrosion resistance of the Ti–50Zr at.% alloy after anodization in different acidic electrolytes. Corros Sci 52:4058–4063CrossRefGoogle Scholar
  14. 14.
    Guedes LFN, Dalboni Garcia MT, Cunha JN et al (2016) Ellipsometric and mechanical characterization of nanostructured anodic oxide film formed on Ti-6Al-7Nb alloy. J Solid State Electrochem 20:2517–2523CrossRefGoogle Scholar
  15. 15.
    Laveissière M, Cerda H, Roche J et al (2019) In-depth study of the influence of electrolyte composition on coatings prepared by plasma electrolytic oxidation of TA6V alloy. Surf Coat Technol 361:50–62CrossRefGoogle Scholar
  16. 16.
    Tributsch H (2006) Electrochemistry at semiconductor and oxidized metal electrodes. Von S. R. Morrison. Plenum Press, New York 1980. Angew Chem 94:85–86Google Scholar
  17. 17.
    Boddy PJ (1968) Oxygen evolution on semiconducting TiO2. J Electrochem Soc 115:199–203CrossRefGoogle Scholar
  18. 18.
    Ge H, Tian H, Zhou Y, Wu S, Liu D, Fu X, Song XM, Shi X, Wang X, Li N (2014) Influence of surface states on the evaluation of the flat band potential of TiO2. ACS Appl Mater Interfaces 6(4):2401–2406PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ferreira EA, Oliveira NTC, Biaggio SR et al (2006) XPS characterization of anodic oxides grown on biocompatible Ti–50Zr alloy in different acid electrolytes. Surf Interface Anal 38:417–421CrossRefGoogle Scholar
  20. 20.
    Delplancke J-L, Winand R (1988) Galvanostatic anodization of titanium - I. structures and compositions of the anodic films. Electrochim Acta 33:1539–1549CrossRefGoogle Scholar
  21. 21.
    Ferdjani S, David D, Beranger G (1993) Anodic oxidation of titanium in phosphoric acid baths: phosphorus incorporation into the oxide. J Alloys Compd 200:191–194CrossRefGoogle Scholar
  22. 22.
    Khalil N, Leach JSL (1996) Anodic oxidation of zirconium: effect of fluoride contamination on oxide structure and transport processes. J Appl Electrochem 26:231–231CrossRefGoogle Scholar
  23. 23.
    Randall JJ, Bernard WJ, Wilkinson RR (1965) A radiotracer study of the composition and properties of anodic oxide films on tantalum and niobium. Electrochim Acta 10:183–201CrossRefGoogle Scholar
  24. 24.
    Rogers GT, Draper PHG, Wood SS (1968) Anion impurities in anodic oxide films on zirconium. Electrochim Acta 13:251–261CrossRefGoogle Scholar
  25. 25.
    Archibald LC, Leach JSL (1977) The anodic oxidation of zirconium - II. Growth and morphology of anodic ZrO2 films. Electrochim Acta 22:21–25CrossRefGoogle Scholar
  26. 26.
    Våland T, Nilsson G (1977) The influence of F− ions on the electrochemical reactions on oxide-covered A1. Corros Sci 17:449–459CrossRefGoogle Scholar
  27. 27.
    Wood GC (1996) A model for the incorporation of electrolyte species into anodic alumina. J Electrochem Soc 143:74CrossRefGoogle Scholar
  28. 28.
    Mogoda AS, El-Taib Heakal F, Ghoneim AA (1992) Formation and dissolution behaviour of ZrO2 film in H3PO4 acid solutions. Thin Solid Films 219:146–152Google Scholar
  29. 29.
    Sloppy JD, Podraza NJ, Dickey EC, Macdonald DD (2010) Complex dielectric functions of anodic bi-layer tantalum oxide. Electrochim Acta 55:8751–8757CrossRefGoogle Scholar
  30. 30.
    Vanhumbeeck J-F, Proost J (2009) Current understanding of Ti anodisation: functional, morphological, chemical and mechanical aspects. Corros Rev 27:117–204CrossRefGoogle Scholar
  31. 31.
    Narayanan R, Seshadri SK (2008) Point defect model and corrosion of anodic oxide coatings on Ti–6Al–4V. Corros Sci 50:1521–1529CrossRefGoogle Scholar
  32. 32.
    Narayanan R, Seshadri SK (2007) Phosphoric acid anodization of Ti–6Al–4V - structural and corrosion aspects. Corros Sci 49:542–558CrossRefGoogle Scholar
  33. 33.
    Kong D-S, Wu J-X (2008) An electrochemical study on the anodic oxygen evolution on oxide film covered titanium. J Electrochem Soc 155:C32CrossRefGoogle Scholar
  34. 34.
    Kong DS (2008) The influence of fluoride on the physicochemical properties of anodic oxide films formed on titanium surfaces. Langmuir 24(10):5324–5331PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Gomez Sanchez A, Schreiner W, Duffó G, Ceré S (2013) Surface modification of titanium by anodic oxidation in phosphoric acid at low potentials. Part 1. Structure, electronic properties and thickness of the anodic films. Surf Interface Anal 45:1037–1046CrossRefGoogle Scholar
  36. 36.
    Connor PA, McQuillan AJ (1999) Phosphate adsorption onto TiO2 from aqueous solutions: an in situ internal reflection infrared spectroscopic study. Langmuir 15:2916–2921CrossRefGoogle Scholar
  37. 37.
    Song G (2005) Transpassivation of Fe–Cr–Ni stainless steels. Corros Sci 47:1953–1987CrossRefGoogle Scholar
  38. 38.
    Olefjord I (1985) Surface composition of stainless steels during anodic dissolution and passivation studied by ESCA. J Electrochem Soc 132:2854CrossRefGoogle Scholar
  39. 39.
    Sato N (1990) An overview on the passivity of metals. Corros Sci 31:1–19CrossRefGoogle Scholar
  40. 40.
    Sun EX, Nowak WB (2001) Electrochemical characteristics of Ti–6Al–4V alloy in 0.2 N NaCl solution. Corros Sci 43:1801–1816CrossRefGoogle Scholar
  41. 41.
    Chao CY (1981) A point defect model for anodic passive films. J Electrochem Soc 128:1187CrossRefGoogle Scholar
  42. 42.
    Ohtsuka T, Nomura N (1997) The dependence of the optical property of Ti anodic oxide film on its growth rate by ellipsometry. Corros Sci 39:1253–1263CrossRefGoogle Scholar
  43. 43.
    Krasicka-Cydzik E (2004) Gel-like layer development during formation of thin anodic films on titanium in phosphoric acid solutions. Corros Sci 46:2487–2502CrossRefGoogle Scholar
  44. 44.
    Sul Y (2003) The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 24(22):3893–3907PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Jaeggi C, Kern P, Michler J, Patscheider J, Tharian J, Munnik F (2006) Film formation and characterization of anodic oxides on titanium for biomedical applications. Surf Interface Anal 38:182–185CrossRefGoogle Scholar
  46. 46.
    Macdonald JR (1987) Impedance spectroscopy: emphasizing solid materials and systems. Wiley, New YorkGoogle Scholar
  47. 47.
    Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy. Wiley, Hoboken, N.JCrossRefGoogle Scholar
  48. 48.
    Ellerbrock D, Macdonald DD (2019) Passivity of titanium, part 1: film growth model diagnostics. J Solid State Electrochem 18:1485–1493CrossRefGoogle Scholar
  49. 49.
    Roh B, Macdonald DD (2019) Passivity of titanium: part II, the defect structure of the anodic oxide film. J Solid State Electrochem 23:1967–1979CrossRefGoogle Scholar
  50. 50.
    Roh B, Macdonald DD (2019) Passivity of titanium, part IV: reversible oxygen vacancy generation/annihilation. J Solid State Electrochem 23:2863–2879CrossRefGoogle Scholar
  51. 51.
    Roh B, Macdonald DD (2007) Effect of oxygen vacancies in anodic titanium oxide films on the kinetics of the oxygen electrode reaction. Russ J Electrochem 43:125–135CrossRefGoogle Scholar
  52. 52.
    Hernández-López JM, Conde A, de Damborenea J, Arenas MA (2015) Correlation of the nanostructure of the anodic layers fabricated on Ti13Nb13Zr with the electrochemical impedance response. Corros Sci 94:61–69CrossRefGoogle Scholar
  53. 53.
    Marsh J, Gorse D (1998) A photoelectrochemical and ac impedance study of anodic titanium oxide films. Electrochim Acta 43:659–670CrossRefGoogle Scholar
  54. 54.
    Roh B, Macdonald DD (2019) The passivity of titanium - part III: characterization of the anodic oxide film. J Solid State Electrochem 23:2001–2008CrossRefGoogle Scholar
  55. 55.
    El Kader JMA, El Wahab FMA, El Shayed HA, Khedr MGA (1981) Oxide film thickening on titanium in aqueous solutions in relation to anion type and concentration. Br Corros J 16:111CrossRefGoogle Scholar
  56. 56.
    Di Quarto F, Di Paola A, Sunseri C (1981) Semiconducting properties of anodic WO3 amorphous films. Electrochim Acta 26:1177–1184Google Scholar
  57. 57.
    Ohtsuka T, Otsuki T (1998) The influence of the growth rate on the semiconductive properties of titanium anodic oxide films. Corros Sci 40:951–958CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Renata Leal Saldanha
    • 1
  • Bhetina Cunha Gomes
    • 2
  • Gabriel da Rocha Torres
    • 1
  • Brenda Raffaela de Lima
    • 2
  • José Adilson de Castro
    • 1
  • Ladário da Silva
    • 1
    • 2
  • Elivelton Alves Ferreira
    • 1
    • 2
    Email author
  1. 1.Programa de Pós-Graduação em Engenharia Metalúrgica (PPGEM)Universidade Federal FluminenseRio de JaneiroBrazil
  2. 2.Instituto de Ciências ExatasUniversidade Federal FluminenseRio de JaneiroBrazil

Personalised recommendations