Advertisement

Preparation and characterization of Ti/SnO2-Sb2O3/α-PbO2/Ce-Nd-β-PbO2 composite electrode for methyl orange degradation

  • Yufu Pan
  • Yanfang Luo
  • Chengcheng Li
  • Rongjing Wang
  • Yihao Yuan
  • Meng Li
  • Ping NaEmail author
Original Paper
  • 30 Downloads

Abstract

The present study focused on the preparation, characterization, and application of cerium (Ce) and neodymium (Nd) co-doped lead (PbO2) electrode, i.e., Ti/SnO2-Sb2O3/α-PbO2/Ce-Nd-β-PbO2. The electrochemical activities of the modified electrode were investigated and compared with those of Ce-PbO2, Nd-PbO2, and pure PbO2 electrodes. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the surface morphology, crystal structure, and elemental states of the modified electrode. The Ce and Nd co-doped PbO2 electrode had smaller crystal particles, more compact structure, and higher activity of electrocatalysis compared with the single-doped and undoped PbO2 electrodes. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) were also utilized to study the electrochemical response of the modified electrodes. The results show that the prepared Ce-Nd-PbO2 electrode has the highest O2 evolution potential (OEP) and lowest charge transfer resistance, suggesting that it has the lower energy consumption than the other three kinds of electrodes. Electrochemical oxidation methyl orange (MO) as a model dye wastewater was studied to evaluate the potential applications of this modified electrode in environmental science. It was found that the Ce-Nd-PbO2 electrode exhibited higher MO and chemical oxygen demand (COD) removal efficiency than single-doped and pure PbO2 electrodes.

Keywords

Electrochemical advanced oxidation processes PbO2 electrode Cerium Neodymium Methyl orange 

Notes

Funding information

This work was supported by the National High Technology Research and Development Program of China (863 Program) (no. 2012AA063504), the National Natural Science Foundation of China (nos. U1407116, 21511130020, and 21276193), and the Tianjin Municipal Natural Science Foundation (no. 13JCZDJC35600).

References

  1. 1.
    Salazar R, Brillas E, Sirés I (2012) Finding the best Fe2+/Cu2+ combination for the solar photoelectro-Fenton treatment of simulated wastewater containing the industrial textile dye Disperse Blue 3. Appl Catal B Environ 115–116(none):107–116CrossRefGoogle Scholar
  2. 2.
    Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97(9):1061–1085PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ 166-167:603–643CrossRefGoogle Scholar
  4. 4.
    Lyu J, Han H, Wu Q (2019) Enhancement of the electrocatalytic oxidation of dyeing wastewater (reactive brilliant blue KN-R) over the Ce-modified Ti-PbO2 electrode with surface hydrophobicity. J Solid State Electrochem 23(3):847–859CrossRefGoogle Scholar
  5. 5.
    Pan G, Jing X, Ding X (2019) Synergistic effects of photocatalytic and electrocatalytic oxidation based on a three-dimensional electrode reactor toward degradation of dyes in wastewater. J Alloys Compd:151749CrossRefGoogle Scholar
  6. 6.
    Do JS, Chen ML (1994) Decolourization of dye-containing solutions by electrocoagulation. J Appl Electrochem 24(8):785–790CrossRefGoogle Scholar
  7. 7.
    Yuan JG, Wang BR, Wang CD (2012) Study on treatment of dye wastewater by UASB-biological contact oxidation process. Adv Mater Res 627:390–393CrossRefGoogle Scholar
  8. 8.
    Cotillas S, Llanos J, Cañizares P (2018) Removal of Procion Red MX-5B dye from wastewater by conductive-diamond electrochemical oxidation. Electrochim Acta 263:1–7CrossRefGoogle Scholar
  9. 9.
    Sirés I, Brillas E, Oturan M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21(14):8336–8367CrossRefGoogle Scholar
  10. 10.
    Ferreira MB, Rocha JHB, Da Silva DR (2016) Application of electrochemical oxidation process to the degradation of the Novacron Blue dye using single and dual flow cells. J Solid State Electrochem 20(9):2589–2597CrossRefGoogle Scholar
  11. 11.
    Labiadh L, Barbucci A, Cerisola G (2015) Role of anode material on the electrochemical oxidation of methyl orange. J Solid State Electrochem 19(10):3177–3183CrossRefGoogle Scholar
  12. 12.
    Labiadh L, Barbucci A, Carpanese MP (2017) Direct and indirect electrochemical oxidation of indigo carmine using PbO2 and TiRuSnO2. J Solid State Electrochem 21(8):2167–2175CrossRefGoogle Scholar
  13. 13.
    Zhu S, Dong B, Zhou S (2018) Degradation of atenolol with electrochemical oxidation at mixed metal oxide electrodes assisted by UV photolysis. Clean-Soil Air Water 46(4):1700077CrossRefGoogle Scholar
  14. 14.
    Qiao MX, Zhang Y, Zhai LF (2018) Corrosion of graphite electrode in electrochemical advanced oxidation processes: degradation protocol and environmental implication. Chem Eng J 344:410–418CrossRefGoogle Scholar
  15. 15.
    Borras N, Oliver R, Arias C (2010) Degradation of atrazine by electrochemical advanced oxidation processes using a boron-doped diamond anode. J Phys Chem A 114(24):6613–6621PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Chaplin BP (2014) Critical review of electrochemical advanced oxidation processes for water treatment applications. Environmental Science Processes & Impacts 16(6):1182–1203CrossRefGoogle Scholar
  17. 17.
    Vilar V, Brillas E, Boaventura R (2017) Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters. Appl Catal B Environ 202:217–261CrossRefGoogle Scholar
  18. 18.
    Panizza M, Cerisola G (2009) Direct and mediated anodic oxidation of organic pollutants. Chem Rev 109(12):6541–6569PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Jum’h I, Abdelhay A, Telfah A (2018) Veratric acid removal from water by electrochemical oxidation on BDD anode. IOP Conference Series: Materials Science and Engineering 305:012021CrossRefGoogle Scholar
  20. 20.
    Candia-Onfray C, Espinoza N, Silva EBSD (2018) Treatment of winery wastewater by anodic oxidation using BDD electrode. Chemosphere 206:709–717PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Zahorulko S, Shmychkova O, Luk'Yanenko T (2019) The comparative study of electrocatalytic activity of various anode materials in respect to the oxidation of nitroanilines. Materials Today-Proceedings 6(2):242–249CrossRefGoogle Scholar
  22. 22.
    Hu X, Yu Y, Yang L (2015) Electrocatalytic activity of Ce-PbO2/C anode for acid red B reduction in aqueous solution. J Solid State Electrochem 19(6):1599–1609CrossRefGoogle Scholar
  23. 23.
    Pereira JF, Figueiredo RS, Ponce-de-León C (2016) Platinum-free lead dioxide electrode for electrooxidation of organic compounds. J Solid State Electrochem 20(4):1167–1173CrossRefGoogle Scholar
  24. 24.
    Zaidi SZJ, Harito C, Walsh FC (2018) Decolourisation of reactive black-5 at an RVC substrate decorated with PbO2/TiO2 nanosheets prepared by anodic electrodeposition. J Solid State Electrochem 22(9):2889–2900CrossRefGoogle Scholar
  25. 25.
    Santos JEL, de Moura DC, Da Silva DR (2019) Application of TiO2-nanotubes/PbO2 as an anode for the electrochemical elimination of Acid Red 1 dye. J Solid State Electrochem 23(2):351–360CrossRefGoogle Scholar
  26. 26.
    Shmychkova O, Luk’Yanenko T, Yakubenko A (2015) Electrooxidation of some phenolic compounds at Bi-doped PbO2. Appl Catal B Environ 162:346–351CrossRefGoogle Scholar
  27. 27.
    Wang C, Niu J, Yin L (2018) Electrochemical degradation of fluoxetine on nanotube array intercalated anode with enhanced electronic transport and hydroxyl radical production. Chem Eng J 346:662–671CrossRefGoogle Scholar
  28. 28.
    Zheng Y, Su W, Chen S (2011) Ti/SnO2-Sb2O5-RuO2/α-PbO2/β-PbO2 electrodes for pollutants degradation. Chem Eng J 174(1):304–309CrossRefGoogle Scholar
  29. 29.
    Duan X, Xu F, Wang Y (2018) Fabrication of a hydrophobic SDBS-PbO2 anode for electrochemical degradation of nitrobenzene in aqueous solution. Electrochim Acta 282:662–671CrossRefGoogle Scholar
  30. 30.
    Zhang W, Kong H, Lin H (2015) Fabrication, characterization and electrocatalytic application of a lead dioxide electrode with porous titanium substrate. J Alloys Compd 650:705–711CrossRefGoogle Scholar
  31. 31.
    Zhou K, Tian Y, Ma H (2018) Photoelectrocatalytic performance of conductive carbon black-modified Ti/F-PbO2 anode for degradation of dye wastewater (reactive brilliant blue KN-R). J Solid State Electrochem 22(4):1131–1141CrossRefGoogle Scholar
  32. 32.
    Li H, Chen Y, Zhang Y (2013) Preparation of Ti/PbO2-Sn anodes for electrochemical degradation of phenol. J Electroanal Chem 689:193–200CrossRefGoogle Scholar
  33. 33.
    Zhang C, Liu J, Chen B (2019) Effect of Ce(NO3)(4) on the electrochemical properties of Ti/PbO2-TiO2-Ce(NO3)(4) electrode for zinc electrowinning. Applied Physics A-Materials Science & Processing 125:150CrossRefGoogle Scholar
  34. 34.
    Liu H, Yu S, Shen T (2014) Preparation of a high-performance composite PbO2 electrode from a new bath for p-chlorophenol oxidation. Sep Purif Technol 132:27–32CrossRefGoogle Scholar
  35. 35.
    Chen Z, Yu Q, Liao D (2013) Influence of nano-CeO2 on coating structure and properties of electrodeposited Al/α-PbO2/β-PbO2. Trans Nonferrous Metals Soc China 23(5):1382–1389CrossRefGoogle Scholar
  36. 36.
    Yao Y, Huang C, Yang Y (2018) Electrochemical removal of thiamethoxam using three-dimensional porous PbO2-CeO2 composite electrode: electrode characterization, operational parameters optimization and degradation pathways. Chem Eng J 350:960–970CrossRefGoogle Scholar
  37. 37.
    Yu H, Song Y, Zhao B (2018) Efficient electrocatalytic degradation of 4-chlorophenol using a Ti/RuO2-SnO2-TiO2/PbO2-CeO2 composite electrode. Electrocatalysis 9(6):725–734CrossRefGoogle Scholar
  38. 38.
    Xu M, Mao Y, Song W (2018) Preparation and characterization of Fe-Ce co-doped Ti/TiO2 NTs/PbO2 nanocomposite electrodes for efficient electrocatalytic degradation of organic pollutants. J Electroanal Chem 823:193–202CrossRefGoogle Scholar
  39. 39.
    Zhang Y, He P, Jia L (2019) Ti/PbO2-Sm2O3 composite based electrode for highly efficient electrocatalytic degradation of alizarin yellow R. J Colloid Interface Sci 533:750–761PubMedCrossRefGoogle Scholar
  40. 40.
    Yao Y, Teng G, Yang Y (2019) Electrochemical oxidation of acetamiprid using Yb-doped PbO2 electrodes: electrode characterization, influencing factors and degradation pathways. Sep Purif Technol 211:456–466CrossRefGoogle Scholar
  41. 41.
    Yao Y, Li M, Yang Y (2019) Electrochemical degradation of insecticide hexazinone with Bi-doped PbO2 electrode: influencing factors, intermediates and degradation mechanism. Chemosphere 216:812–822PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Wang X, Wu Q, Ma H (2019) Fabrication of PbO2 tipped Co3O4 nanowires for efficient photoelectrochemical decolorization of dye (reactive brilliant blue KN-R) wastewater. Sol Energy Mater Sol Cells 191:381–388CrossRefGoogle Scholar
  43. 43.
    Yao Y, Ren B, Yang Y (2019) Preparation and electrochemical treatment application of Ce-PbO2/ZrO2 composite electrode in the degradation of acridine orange by electrochemical advanced oxidation process. J Hazard Mater 361:141–151PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Chen B, Yan W, He Y (2019) Influence of F-doped beta-PbO2 conductive ceramic layer on the anodic behavior of 3D Al/Sn rod Pb-0.75% Ag for zinc electrowinning. J Electrochem Soc 166(4):E119–E128CrossRefGoogle Scholar
  45. 45.
    Xia Y, Dai Q (2018) Electrochemical degradation of antibiotic levofloxacin by PbO2 electrode: kinetics, energy demands and reaction pathways. Chemosphere 205:215–222PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Weng M (2018) Electrochemical oxidation of tetracaine hydrochloride using a transition metal doped PbO2 electrode. Int J Electrochem Sci 13(12):11720–11729CrossRefGoogle Scholar
  47. 47.
    Du H, Duan G, Wang N (2018) Fabrication of Ga2O3-PbO2 electrode and its performance in electrochemical advanced oxidation processes. J Solid State Electrochem 22(12):3799–3806CrossRefGoogle Scholar
  48. 48.
    Gurung K, Ncibi MC, Shestakova M (2018) Removal of carbamazepine from MBR effluent by electrochemical oxidation (EO) using a Ti/Ta2O5-SnO2 electrode. Appl Catal B Environ 221:329–338CrossRefGoogle Scholar
  49. 49.
    Jin Y, Wang F, Xu M (2015) Preparation and characterization of Ce and PVP co-doped PbO2 electrode for waste water treatment. J Taiwan Inst Chem Eng 51:135–142CrossRefGoogle Scholar
  50. 50.
    Ansari A, Nematollahi D (2018) A comprehensive study on the electrocatalytic degradation, electrochemical behavior and degradation mechanism of malachite green using electrodeposited nanostructured beta-PbO2 electrodes. Water Res 144:462–473PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Qiao Q, Singh S, Lo S (2018) Electrochemical oxidation of acid orange 7 dye with Ce, Nd, and Co-modified PbO2 electrodes: preparation, characterization, optimization, and mineralization. J Taiwan Inst Chem Eng 84:110–122CrossRefGoogle Scholar
  52. 52.
    Shmychkova O, Luk Yanenko T, Amadelli R (2016) Electrodeposition of Ni2+-doped PbO2 and physicochemical properties of the coating. J Electroanal Chem 774:88–94CrossRefGoogle Scholar
  53. 53.
    Chang L, Zhou Y, Duan X (2014) Preparation and characterization of carbon nanotube and Bi co-doped PbO2 electrode. J Taiwan Inst Chem Eng 45(4):1338–1346CrossRefGoogle Scholar
  54. 54.
    Duan X, Zhao Y, Liu W (2014) Electrochemical degradation of p-nitrophenol on carbon nanotube and Ce-modified-PbO2 electrode. J Taiwan Inst Chem Eng 45(6):2975–2985CrossRefGoogle Scholar
  55. 55.
    Shmychkova O, Luk Yanenko T, Piletska A (2015) Electrocrystallization of lead dioxide: influence of early stages of nucleation on phase composition. J Electroanal Chem 746:57–61CrossRefGoogle Scholar
  56. 56.
    Shmychkova O, Luk Yanenko T, Amadelli R (2014) Physico-chemical properties of PbO2-anodes doped with Sn4+and complex ions. J Electroanal Chem 717-718:196–201CrossRefGoogle Scholar
  57. 57.
    Shmychkova O, Luk Yanenko T, Amadelli R (2013) Electrodeposition of Ce-doped PbO2. J Electroanal Chem 706:86–92CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Yufu Pan
    • 1
  • Yanfang Luo
    • 1
  • Chengcheng Li
    • 1
  • Rongjing Wang
    • 1
  • Yihao Yuan
    • 1
  • Meng Li
    • 1
  • Ping Na
    • 1
    Email author
  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations