Advertisement

CZTS counter electrode in dye-sensitized solar cell: enhancement in photo conversion efficiency with morphology of TiO2 nanostructured thin films

  • Jitendra P. SawantEmail author
  • Rohidas B. Kale
Original Paper
  • 40 Downloads

Abstract

In the present investigation, kesterite phase Cu2ZnSnS4 (CZTS) nanoparticle, and one-dimensional (1D) nanorods and three-dimensional (3D) flower-like rutile phase TiO2 thin films were obtained by the conventional hydrothermal method. The (112) plane–oriented single-phase CZTS nanoparticles with chemical composition Cu/(Zn + Sn) = 0.84, 0.90, 1.05 were obtained by changing the copper concentration of the precursor solution. The CZTS thin films were prepared on fluorine-doped tin oxide (FTO) substrate by the doctor blade coating method. The effect of reaction time on growth of the hydrothermal deposited rutile phase TiO2 nanorod thin films were investigated. The detailed structural properties, phase identification, and morphological developments were investigated using X-ray diffraction (XRD), Raman spectroscopy, high-resolution transmission electron microscopy (HRTEM), and scanning electron microscopy (SEM) techniques. The dye-sensitized solar cells were fabricated with CZTS counter electrodes (CEs) and hydrothermal deposited nanostructured TiO2 photoanodes. The device formed with three-dimensional TiO2 nanostructured photoanode showed higher efficiency (2.65%) than one-dimensional microstructures (1.74%). The study demonstrates that the nanostructure-based morphologies of TiO2 photoanodes affect the performance of CZTS CEs–based dye-sensitized solar cell.

Keywords

CZTS nanoparticles TiO2 nanostructures DSSC counter electrode 2.65% efficiency 

Notes

Acknowledgments

Authors are thankful to Director, The Institute of Science, Fort, Mumbai, for the encouragement and providing the necessary facility. Authors are also thankful to INUP.

Funding information

This research work is supported by the Department of Science and Technology, India under FISt (SR/FST/PSI-173/2012) program.

References

  1. 1.
    Mitzi BD, Gunwan O, Tordov TK, Wang K, Ghuha S (2011) The path towards a high-performance solution-processed kesterite solar cell. Sol Energy Mater Sol Cells 95:1421–1436CrossRefGoogle Scholar
  2. 2.
    Karagiri H, Jimbo K, Yamada S, Kamimura T, Maw SW, Fukano T, Ito T, Motohiro T (2008) Enhanced conversion efficiency of Cu2ZnSnS4 – based thin film solar cells by using preferential etching technique. Appl Phy Express 1:041201CrossRefGoogle Scholar
  3. 3.
    Kameyama T, Osaki T, Okazaki K, Shibayama T, Kudo A, Kuwabata S, Torimoto T (2010) Preparation and photoelectrochemcial properties of densely immobilized Cu2ZnSnS4 thin films. J Mater Chem 20:5319–5324CrossRefGoogle Scholar
  4. 4.
    Ito K, Nakazawa T (1988) Electrical, and optical properties of stannite type quaternary semiconductor thin films. J Appl Phy 27:2094–2097CrossRefGoogle Scholar
  5. 5.
    Katagiri H (2005) CuZnSnS thin films solar cells. Thin Solid Films 480-481:426–432CrossRefGoogle Scholar
  6. 6.
    Tordov TK, Tang J, Bag S, Gunwan O, Gokmen T, Zhu Y, Mitzi BD (2013) Beyond 11% efficiency: characteristics of state of the art Cu2ZnSn(S,Se) solar cells. Adv Energy Mater 3:34–38CrossRefGoogle Scholar
  7. 7.
    Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-Ebinger J, Ho-Baillie AWY (2018) Solar cell efficiency table (version 51). Prog Photovolt 26:3–12CrossRefGoogle Scholar
  8. 8.
    Wang W, Winkler MT, Gunwan O, Gokman T, Tordov TK, Zhu Y, Mitzi BD (2014) Device characteristics of CZTSSe thin film solar cells with 12.6% efficiency. Adv Energy Maret 4:1301465CrossRefGoogle Scholar
  9. 9.
    Chen H, Kou D, Chang Z, Zhou W, Zhou Z, Wu S (2014) Effect of crystallisation of Cu2ZnSnSxSe4-x counter electrode on the performance of for efficient dye sensitized solar cells. ACS Appl Mater Interface 6:20664CrossRefGoogle Scholar
  10. 10.
    Chen SL, Xu AC, Tao J, Tao HJ, Shen YZ, Zhu LM, Zhu LM, Jiang JJ, Wang T, Pan L (2016) In situ synthesis of two-dimensional leaf-like plate arrays as Pt- free counter electrode for efficient dye sensitized solar cell. Green Chem 18(9):2793–2801CrossRefGoogle Scholar
  11. 11.
    Mali SS, Patil PS, Hong CK (2014) Low cost electrospun crystalline kesterite Cu2ZnSnS4nanofibre counter electrodes for efficient dye sensitized solar cells. ACS Appl Mater Interface 6:1688CrossRefGoogle Scholar
  12. 12.
    Bai B, Kou D, Zho W, Wu S (2015) Applications od quaternary Cu2ZnSnS4 quantum dot sensitized solar cells based on hydrolysis approach. Green Chem 17:4377–4382CrossRefGoogle Scholar
  13. 13.
    Riha SC, Parkinson BA, Prieto AL (2011) Compositionally tunable Cu2ZnSnSxSe4-xnanocrystals: probing the effect of Se inclusion in mixed chalcogenide thin films. J Am Chem Soc 133:15272PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Patel SB, Patel AH, Gohel JV (2018) A novel and cost effective CZTS transport material applied in perovskite solar cells. J Mater Sci Mater Electron 20:7677–7687Google Scholar
  15. 15.
    Patel SB, Gohel VH (2018) Synthesis of novel counter electrode by combination of mesoporous- microporous CZTS films for enhanced performance of quantum dot sensitized solar cells. J Mater Sci Mater Electron 0:1–8Google Scholar
  16. 16.
    Chen S, Tao H, She Y, Zhu L, Zeng X, Tao J, Wang T (2015) Facile synthesis of single crystalline sub-micron Cu2ZnSnS4 (CZTS) powders using solvothermal treatment. RSC Adv 5:6682CrossRefGoogle Scholar
  17. 17.
    Kong J, Zhu ZJ, Li M, Zhou WH, Yuan SJ, Yao RY, Zho Y, Wu SX (2013) Wurtzite copper zinc tin sulphide as a superior counter electrode material for dye sensitized solar cell. Nanoscale Res Lett 8(1):464PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Varadharajaperumal S, Sripan V, Ganesh R, Hegade G (2017) Morphology controlled n-type TiO2 and stoichiometry adjusted p-type Cu2ZnSnS4 thin films for photovoltaic applications. Cryst Grwoth Des 17:5154–5162CrossRefGoogle Scholar
  19. 19.
    Dou J, Li Y, Xi F, Ding X, Wei M (2016) Metal organic frame work derived hierarchical porous anatase TiO2 as a photoanode for dye sensitized solar cell. Cryst Growth Des 16:121–125CrossRefGoogle Scholar
  20. 20.
    Fan K, Zhang W, Peng T, Chen J, Yang F (2011) Application of TiO2 fusiform nanorods for dye sensitized solar cells with significant improved efficiency. J Phys Chem C 115:17213–17219CrossRefGoogle Scholar
  21. 21.
    Zhao K, Pen Z, Zhong X (2016) Charge recombination for high efficiency quantum dot sensitized solar cell. J Phy Chem Lett 7:406–4017CrossRefGoogle Scholar
  22. 22.
    Roy P, Kim D, Lee K, Spiecker E, Schmuki P, Bach U, Schmidt-Mende L, Zakeeruddin SM, Kay A, Nazeeruddin MK, Gratzel M, Kim C (2010) TiO2 nanotubes, and their applications in dye sensitized solar cells. Nanoscale 2(1):45–59PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Shen Q, Qian K, Guan R, Xue J, Zhau L, Liu X, Jia H, Hu L, Xu B (2019) Influence of annealing temperature on microstructure and photoelectric properties of ternary CdSe@CdS@ core shell heterojunctions. J Solid State Electrochem 23:2085CrossRefGoogle Scholar
  24. 24.
    Shen Q, Xue J, Zhao H, Shao M, Liu X, Jia H (2017) The role of crystalline TiO2 nanoparticles in enhancing the photocatalytic and photovoltaics properties of CdS nanorods. J Alloys Compd 695:1080CrossRefGoogle Scholar
  25. 25.
    Wang K, Gunawan O, Tordov T, Shin B, Chey SJ, Bojarczuk NA, Mitzi D, Guha S (2010) Thermally evaporated Cu2ZnSnS4 solar cells. Appl Phy Lett 97:143508CrossRefGoogle Scholar
  26. 26.
    Seol J, Lee S, Lee J, Nam H, Kim K (2003) Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering processes. Sol Energy Mater Sol Cells 75:155CrossRefGoogle Scholar
  27. 27.
    Williams BA, Smeaton MA, Trejo ND, Francis LF, Aydil ES (2017) Effect of nanocrystals size and carbon on grain growth during annealing of copper zinc thin sulphide nanocrystals coating. Chem Mater 29:1676CrossRefGoogle Scholar
  28. 28.
    Chan CP, Lam H, Surya C (2010) Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids. Sol Energy Mater Sol Cells 94:209Google Scholar
  29. 29.
    Kamoun N, Bouzouita H, Rezig B (2007) Fabrication and characterization of CZTS thin films deposited by spray pyrolysis method. Thin Solid Films 515:5949CrossRefGoogle Scholar
  30. 30.
    Chernomordik BD, Ketkat PM, Hunter AK, Beland AE, Deng DD, Aydil ES (2016) Microstructure evolution during selenisation of CZTS colloidal nanocrystals coating. Chem Mater 28:1266CrossRefGoogle Scholar
  31. 31.
    Yang W, Bob B, Zhou H, Bao L, Chung CH, Sheng-HL HWW, Yang Y (2012) Novel solution processing of high efficiency earth abundant CZTSSe solar cells. Adv Mater 24:6323PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Tordov TK, Bag S, Gukmen O, Zhu Y, Mitzi DB (2013) Beyond 11% efficiency: characteristics of state of art CZTSSe solar cells. Adv Energy Mater 3:34CrossRefGoogle Scholar
  33. 33.
    Woo K, Kim Y, Moon J (2012) A nontoxic solution processed, earth abundant absorbing layer for thin film solar cell. Energy Environ Sci 5:534CrossRefGoogle Scholar
  34. 34.
    Wang J, Zhang P, Song X, Gao L (2014) Surfactant free hydrothermal synthesis of CZTS nanocrystals with photocatalytic properties. RSC Ad 4:27805CrossRefGoogle Scholar
  35. 35.
    Katagiry H, Jimbo K, Maw WS, Oishi K, Yamazaki M, Araki H, Tekeuchi A (2009) Development of CZTS based thin film solar cells. Thin Sold Films 517:2455CrossRefGoogle Scholar
  36. 36.
    Kishorkumar YB, UdayBhaskar P, Suresh Babu G, Sundara Raja V (2010) Effect of copper salt and thiourea concentration on formation of CZTS thin films by spray pyrolysis method. Phys Status Solid A 207:149CrossRefGoogle Scholar
  37. 37.
    Yu SH, Shu L, Yang J, Han ZH, Qian YT, Zhang YH (1999) A solvothermal decomposition process for fabrication particle size control of Bi2S3 nanowires. J Mater Res 14:4157–4162CrossRefGoogle Scholar
  38. 38.
    Luo YS, Zhang WD, Dai XJ, Yang Y, Fu SY (2009) Facile synthesis and luminescent properties of novel flower like BaMoO4 nanostructures by simple hydrothermal route. J Phys Chem C 113:4856–4561CrossRefGoogle Scholar
  39. 39.
    Roosen AR, Carter WC (1998) Simulation of microstructural evolution: anisotropic growth and coarsening. Physics A 261:323CrossRefGoogle Scholar
  40. 40.
    Berhe SA, Nag S, Molinets Z, Youngblood WJ (2013) Influence of seeding and bath conditions in hydrothermal growth of very thin (~ 20 nm) single crystalline rutile TiO2 nanorod films. ACS Appl Mater Interface 5:1181–1185CrossRefGoogle Scholar
  41. 41.
    Kong J, Zhou Z, Li M, Zhou WH, Yuan SJ, Yao R, Zhao Y, Wu S (2013) Wrutzile copper zinc tin sulphide as a superior counter electrode for dye sensitized solar cells. Nanoscale Res Let 8:464CrossRefGoogle Scholar
  42. 42.
    Li M, Zhou WH, Guo J, Zhou YL, Hou ZL, Jiao J, Zhou ZJ, Du ZL, Wu S (2012) Synthesis of pure metastable wrutzite CZTS nanocrystals by one pot method. J Phys Chem C 116(50):26507CrossRefGoogle Scholar
  43. 43.
    Jin WC, Agus I, Park SJ, Kim W, Yoon S, Min BK (2013) Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell application. ACS Appl Mater Interface 5:4162CrossRefGoogle Scholar
  44. 44.
    Zou C, Zhang LJ, Lin DS, Yang Y, Li Q, Xu XJ, Chen X, Huang SM (2011) Facile synthesis of Cu2ZnSnS4 nanocrystals. Crystengcomm 13:3310CrossRefGoogle Scholar
  45. 45.
    Ghoderao KP, Jambhale SN, Kale RB (2018) Influence of reaction temperature and on hydrothermally grown TiO2 nanorods and their performance in dye sensitised solar cell. Superlattice and microstructures 124:121–130CrossRefGoogle Scholar
  46. 46.
    Yin X, Tang C, Chem M, Adms S, Wang H, Gong H (2013) Hierarchical porous Cu2ZnSnS4 films for high capacity reversible lithium storage application. J Mater Chem A 48:9162–9164Google Scholar
  47. 47.
    Fan FJ, Wu L, Gong M, Liu G, Wang YX, Yu SH, Chen S, Wang LW, Gong XG (2013) Bomposition and band gap tunable synthesis wurtzite-derived Cu2ZnSnS(1-x)Sex4 nanocrystals: theoretical and experimental insight. ACS Nano 7:1454PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsThe Institute of ScienceMumbaiIndia

Personalised recommendations