One-step electrochemical synthesis of MoS2/graphene composite for supercapacitor application

  • Gomaa A. M. Ali
  • Mohammad R. Thalji
  • Wee Chen Soh
  • H. Algarni
  • Kwok Feng ChongEmail author
Original Paper


In this study, an MoS2/graphene composite is fabricated from bulk MoS2 and graphite rod via a facile electrochemical exfoliation method. The as-prepared samples are characterized by X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy techniques to confirm the formation of the MoS2/graphene composite. The electrochemical behavior of the MoS2/graphene composite is evaluated through cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy. It exhibits high specific capacitance of 227 F g−1 as compared with the exfoliated graphene (85 F g−1) and exfoliated MoS2 (70 F g−1) at a current density of 0.1 A g−1. This can be attributed to the synergistic effect between graphene and MoS2. Moreover, it displays high electrochemical stability and low electrical resistance.

Graphical abstract


Electrochemical exfoliation Supercapacitors Graphene Exfoliated MoS2 2D materials 



The authors would like to acknowledge the funding from the Ministry of Education Malaysia in the form of FRGS [RDU1901186: FRGS/1/2019/STG07/UMP/02/6] and Universiti Malaysia Pahang grant RDU170357. Moreover, the authors extend their appreciation to King Khalid University, the Ministry of Education–Kingdom of Saudi Arabia for supporting this research through a grant (RCAMS/KKU/002-18) under the Research Center for Advanced Material Science. In addition, Dr. Gomaa A. M. Ali would like to express his thanks to SESAME Synchrotron (Allan, Jordan), which through the EU-funded project OPEN SESAME provided training on material characterization testing and data analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10008_2019_4449_MOESM1_ESM.docx (411 kb)
ESM 1 (DOCX 410 kb)


  1. 1.
    Quan Q, Lin X, Zhang N et al (2017) Graphene and its derivatives as versatile templates for materials synthesis and functional applications. Nanoscale 9:2398–2416PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lee SP, Ali GAM, Algarni H et al (2019) Flake size-dependent adsorption of graphene oxide aerogel. J Mol Liq 277:175–180CrossRefGoogle Scholar
  3. 3.
    Wang J, Luo Q, Luo C et al (2017) High-performance supercapacitor electrode based on a nanocomposite of polyaniline and chemically exfoliated MoS2 nanosheets. J Solid State Electrochem 21:2071–2077CrossRefGoogle Scholar
  4. 4.
    Jia W, Tang B, Wu P (2018) Nafion-assisted exfoliation of MoS2 in water phase and the application in quick-response NIR light controllable multi-shape memory membrane. Nano Res 11:542–553CrossRefGoogle Scholar
  5. 5.
    Li Y, Wang H, Xie L et al (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tuteja SK, Duffield T, Neethirajan S (2017) Liquid exfoliation of 2D MoS2 nanosheets and their utilization as a label-free electrochemical immunoassay for subclinical ketosis. Nanoscale 9:10886–10896PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ganatra R, Zhang Q (2014) Few-layer MoS2: a promising layered semiconductor. ACS Nano 8:4074–4099PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Aboelazm EAA, Ali GAM, Algarni H et al (2018) Flakes size-dependent optical and electrochemical properties of MoS2. Curr Nanosci 14:416–420CrossRefGoogle Scholar
  9. 9.
    Theerthagiri J, Senthil R, Senthilkumar B et al (2017) Recent advances in MoS2 nanostructured materials for energy and environmental applications–a review. J Solid State Chem 252:43–71CrossRefGoogle Scholar
  10. 10.
    Gusmão R, Sofer Z, Luxa J et al (2019) Antimony chalcogenide van der Waals nanostructures for energy conversion and storage. ACS Sustain Chem Eng 7:15790–15798CrossRefGoogle Scholar
  11. 11.
    Zhang S, Song X, Liu S et al (2019) Template-assisted synthesized MoS2/polyaniline hollow microsphere electrode for high performance supercapacitors. Electrochim Acta 312:1–10CrossRefGoogle Scholar
  12. 12.
    Raccichini R, Varzi A, Passerini S et al (2015) The role of graphene for electrochemical energy storage. Nat Mater 14:271–279PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Ali GAM, Makhlouf SA, Yusoff MM et al (2015) Structural and electrochemical characteristics of graphene nanosheets as supercapacitor electrodes. Rev Adv Mater Sci 40:35–43Google Scholar
  14. 14.
    Liu N, Kim P, Kim JH et al (2014) Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 8:6902–6910PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Ambrosi A, Pumera M (2018) Electrochemical exfoliation of MoS2 crystal for hydrogen electrogeneration. Chem Eur J 24:18551–18555PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Jia Y, Wan H, Chen L et al (2017) Hierarchical nanosheet-based MoS2/graphene nanobelts with high electrochemical energy storage performance. J Power Sources 354:1–9CrossRefGoogle Scholar
  17. 17.
    Achee TC, Sun W, Hope JT et al (2018) High-yield scalable graphene nanosheet production from compressed graphite using electrochemical exfoliation. Sci Rep 8:14525PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Liu Y, Zhao Y, Jiao L et al (2014) A graphene-like MoS2/graphene nanocomposite as a highperformance anode for lithium ion batteries. J Mater Chem A 2:13109–13115CrossRefGoogle Scholar
  19. 19.
    Chen Y, Ma W, Cai K et al (2017) In situ growth of polypyrrole onto three-dimensional tubular MoS2 as an advanced negative electrode material for supercapacitor. Electrochim Acta 246:615–624CrossRefGoogle Scholar
  20. 20.
    Kee CW (2015) Assignment of O–O and Mo=O stretching frequencies of molybdenum/tungsten complexes revisited. J Chem 2015:439270–439279CrossRefGoogle Scholar
  21. 21.
    da Silveira Firmiano EG, Rabelo AC, Dalmaschio CJ et al (2014) Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv Energy Mater 4:1301380–1301387CrossRefGoogle Scholar
  22. 22.
    Zhou K, Jiang S, Bao C et al (2012) Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties. RSC Adv 2:11695–11703CrossRefGoogle Scholar
  23. 23.
    Teo EYL, Ali GAM, Algarni H et al (2019) One-step production of pyrene-1-boronic acid functionalized graphene for dopamine detection. Mater Chem Phys 231:286–291CrossRefGoogle Scholar
  24. 24.
    Liu H, Chen B, Liao L et al (2019) The influences of mg intercalation on the structure and supercapacitive behaviors of MoS2. J Mater Sci 54:13247–13254CrossRefGoogle Scholar
  25. 25.
    Tanhaei M, Mahjoub AR, Safarifard V (2019) Energy-efficient sonochemical approach for the preparation of nanohybrid composites from graphene oxide and metal-organic framework. Inorg Chem Commun 102:185–191CrossRefGoogle Scholar
  26. 26.
    Zhang R, Wan W, Li D et al (2017) Three-dimensional MoS2/reduced graphene oxide aerogel as a macroscopic visible-light photocatalyst. Chin J Catal 38:313–320CrossRefGoogle Scholar
  27. 27.
    Zhou Y, Zhang X, Zhang Q et al (2014) Role of graphene on the band structure and interfacial interaction of Bi2WO6/graphene composites with enhanced photocatalytic oxidation of NO. J Mater Chem A 2:16623–16631CrossRefGoogle Scholar
  28. 28.
    Ali GAM, Fouad OA, Makhlouf SA (2013) Structural, optical and electrical properties of sol–gel prepared mesoporous Co3O4/SiO2 nanocomposites. J Alloys Compd 579:606–611CrossRefGoogle Scholar
  29. 29.
    Wang Q, Huang J, Sun H et al (2018) MoS2 quantum dots@TiO2 nanotube arrays: an extended-spectrum-driven photocatalyst for solar hydrogen evolution. ChemSusChem 11:1708–1721PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Abdi MM, Ekramul Mahmud HNM, Abdullah LC et al (2012) Optical band gap and conductivity measurements of polypyrrole-chitosan composite thin films. Chin J Polym Sci 30:93–100CrossRefGoogle Scholar
  31. 31.
    Li Z, Xiang K, Xing W et al (2015) Reversible aluminum-ion intercalation in prussian blue analogs and demonstration of a high-power aluminum-ion asymmetric capacitor. Adv Energy Mater 5:1401410CrossRefGoogle Scholar
  32. 32.
    Wang R, Wang S, Peng X et al (2017) Elucidating the intercalation pseudocapacitance mechanism of MoS2–carbon monolayer interoverlapped superstructure: toward high-performance sodium-ion-based hybrid supercapacitor. ACS Appl Mater Interfaces 9:32745–32755PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Sarkar D, Das D, Das S et al (2019) Expanding interlayer spacing in MoS2 for realizing an advanced supercapacitor. ACS Energy Letters 4:1602–1609CrossRefGoogle Scholar
  34. 34.
    Thalji MR, Ali GAM, Algarni H et al (2019) Al3+ ion intercalation pseudocapacitance study of W18O49 nanostructure. J Power Sources 438:227028CrossRefGoogle Scholar
  35. 35.
    Aboelazm EAA, Ali GAM, Chong KF (2018) Cobalt oxide supercapacitor electrode recovered from spent lithium-ion battery. Chem Adv Mater 3:67–74Google Scholar
  36. 36.
    Ali GAM, Fouad OA, Makhlouf SA et al (2014) Co3O4/SiO2 nanocomposites for supercapacitor application. J Solid State Electrochem 18:2505–2512CrossRefGoogle Scholar
  37. 37.
    Li Z, Zhou Z, Yun G et al (2013) High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites. Nanoscale Res Lett 8:473PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fu M, Ge C, Hou Z et al (2013) Graphene/vanadium oxide nanotubes composite as electrode material for electrochemical capacitors. Phys B Condens Matter 421:77–82CrossRefGoogle Scholar
  39. 39.
    Zhu J, He J (2012) Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. ACS Appl Mater Interfaces 4:1770–1776PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Chen S, Zhu J, Wu X et al (2010) Graphene oxide-MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Wang Q, Jiao L, Du H et al (2014) Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors. J Power Sources 245:101–106CrossRefGoogle Scholar
  42. 42.
    Wu M-S, Lin C-J, Ho C-L (2012) Multilayered architecture of graphene nanosheets and MnO2 nanowires as an electrode material for high-performance supercapacitors. Electrochim Acta 81:44–48CrossRefGoogle Scholar
  43. 43.
    Prabukumar C, Mohamed Jaffer Sadiq M, Krishna Bhat D et al (2019) SnO2 nanoparticles functionalized MoS2 nanosheets as the electrode material for supercapacitor applications. Mater Res Express 6:085526CrossRefGoogle Scholar
  44. 44.
    Zhang F, Tang Y, Liu H et al (2016) Uniform incorporation of flocculent molybdenum disulfide nanostructure into three-dimensional porous graphene as an anode for high-performance lithium ion batteries and hybrid supercapacitors. ACS Appl Mater Interfaces 8:4691–4699PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Patil S, Harle A, Sathaye S et al (2014) Development of a novel method to grow mono−/few-layered MoS2 films and MoS2–graphene hybrid films for supercapacitor applications. CrystEngComm 16:10845–10855CrossRefGoogle Scholar
  46. 46.
    Xiao W, Zhou W, Feng T et al (2016) Simple synthesis of molybdenum disulfide/reduced graphene oxide composite hollow microspheres as supercapacitor electrode material. Materials 9:783–796PubMedCentralCrossRefGoogle Scholar
  47. 47.
    Zheng S, Zheng L, Zhu Z et al (2018) MoS2 nanosheet arrays rooted on hollow rGO spheres as bifunctional hydrogen evolution catalyst and supercapacitor electrode. Nano-Micro Lett 10:62–72CrossRefGoogle Scholar
  48. 48.
    Wang J, Wu Z, Hu K et al (2015) High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor. J Alloys Compd 619:38–43CrossRefGoogle Scholar
  49. 49.
    Ali GAM, Manaf SAA, Divyashree A et al (2016) Superior supercapacitive performance in porous nanocarbons. J Energy Chem 25:734–739CrossRefGoogle Scholar
  50. 50.
    Ali GAM, Yusoff MM, Shaaban ER et al (2017) High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries. Ceram Int 43:8440–8448CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Industrial Sciences & TechnologyUniversiti Malaysia PahangKuantanMalaysia
  2. 2.Chemistry Department, Faculty of ScienceAl-Azhar UniversityAssiutEgypt
  3. 3.Research Centre for Advanced Materials Science (RCAMS)King Khalid UniversityAbhaSaudi Arabia
  4. 4.Department of Physics, Faculty of SciencesKing Khalid UniversityAbhaSaudi Arabia

Personalised recommendations