High-efficiency and sustainable photoelectric conversion of CO2 to methanol over CuxO/TNTs catalyst by pulse potential method

  • Liqiang Zhang
  • Huazhen CaoEmail author
  • Yueheng Lu
  • Huibin Zhang
  • Guangya Hou
  • Yiping Tang
  • Guoqu ZhengEmail author
Original Paper


Herein, we report a special pulse potential method to increase methanol production and keep the CuxO/TiO2 nanotube array (TNT) catalyst active during photoelectrocatalysis reduction of CO2. The CuO/TNT catalyst was prepared via electrodeposition of copper on anodized titanium oxide followed by heat treatment. The variation of valence of copper in the photoelectrocatalytic reduction process was studied intensively by high-resolution transmission electron microscopy, XPS, and AES characterizations. Results show that the photocatalytically active CuO is apt to be reduced to elementary Cu during photoelectrocatalysis process, leading to rapid decay of photocatalytic activity. While for the case of pulse potential regime, another photocatalytically active oxide, Cu2O, will be produced on the surface during anodic pulse, which can effectively maintain the photocatalytic activity of catalyst. CV study indicates that the oxidation of Cu is prior to the oxidation of methanol, so the methanol oxidation hardly ever happens during anodic pulse stage. The catalyst applied in pulse potential regime provided a much larger photocurrent than that in constant potential regime over an extended period of time. As a result, the yield of methanol produced in optimized pulse potential condition is greatly increased, nearly twice that in constant potential regime.


CuxO catalyst Photoelectrocatalysis CO2 reduction Methanolization Pulse potential 


Funding information

This work was supported by the Natural Science Foundation of Zhejiang Province (No. LY17B030009 and No. LQ16E020002).


  1. 1.
    D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem 49(35):6058–6082CrossRefGoogle Scholar
  2. 2.
    Tu W, Zhou Y, Zou Z (2014) Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv Mater 26(27):4607–4626CrossRefPubMedGoogle Scholar
  3. 3.
    Fang B, Xing Y, Bonakdarpour A, Zhang S, Wilkinson DP (2015) Hierarchical CuO–TiO2 hollow microspheres for highly efficient photodriven reduction of CO2 to CH4. ACS Sustain Chem Eng 3:2381–2388CrossRefGoogle Scholar
  4. 4.
    Nguyen VH, Wu JCS (2018) Recent developments in the design of photoreactors for solar energy conversion from water splitting and CO2 reduction. Appl Catal A 550:122–141CrossRefGoogle Scholar
  5. 5.
    Han E, Hu F, Zhang S, Luan B, Li P, Sun H, Wang S (2018) Worm-like FeS2/TiO2 nanotubes for photoelectrocatalytic reduction of CO2 to methanol under visible light. Energ Fuel 32:4357–4363CrossRefGoogle Scholar
  6. 6.
    Li H, Lei Y, Huang Y, Fang Y, Xu Y, Zhu L, Li X (2011) Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation. J Nat Gas Chem 20:145–150CrossRefGoogle Scholar
  7. 7.
    Huang J, Fu G, Shi C, Wang X, Zhai M, Gu C (2014) Novel porous CuO microrods: synthesis, characterization, and their photocatalysis property. J Phys Chem Solids 75:1011–1016CrossRefGoogle Scholar
  8. 8.
    Shao Q, Wang LY, Wang XJ, Yang MC, Ge SS, Yang XK, Wang JX (2013) Hydrothermal synthesis and photocatalytic property of porous CuO hollow microspheres via PS latex as templates. Solid State Sci 20:29–35CrossRefGoogle Scholar
  9. 9.
    Kim H, Bae S, Jeon D, Ryu J (2018) Fully solution-processable Cu2O–BiVO4 photoelectrochemical cells for bias-free solar water splitting. Green Chem 20:3732–3742CrossRefGoogle Scholar
  10. 10.
    Wang K, Zhang WZ, Lou FP, Wei T, Qian ZM, Guo WH (2018) Preparation of electrospun heterostructured hollow SnO2/CuO nanofibers and their enhanced visible light photocatalytic performance. J Solid State Electr 22:2413–2423CrossRefGoogle Scholar
  11. 11.
    Pozan GS, Isleyen M, Gokcen S (2013) Transition metal coated TiO2 nanoparticles: synthesis, characterization and their photocatalytic activity. Appl Catal B140-141(Complete):537–545CrossRefGoogle Scholar
  12. 12.
    Scuderi V, Amiard G, Sanz R, Boninelli S, Impellizzeri G, Privitera V (2017) TiO2 coated CuO nanowire array: ultrathin p–n heterojunction to modulate cationic/anionic dye photo-degradation in water. Appl Surf Sci 416:885–890CrossRefGoogle Scholar
  13. 13.
    Hu Q, Huang J, Li G, Chen J, Zhang Z, Deng Z, Jiang Y, Guo W, Cao Y (2016) Effective water splitting using CuOx/TiO2 composite films: role of Cu species and content in hydrogen generation. Appl Surf Sci 369:201–206CrossRefGoogle Scholar
  14. 14.
    Santamaria M, Conigliaro G, Di Franco F (2014) Photoelectrochemical evidence of Cu2O/TiO2 nanotubes hetero-junctions formation and their physicochemical characterization. Electrochim Acta 144:315–323CrossRefGoogle Scholar
  15. 15.
    Xq S, Li J, Zq Z, Yu M, Yuan L (2015) Cu(II) porphyrins modified TiO2 photocatalysts: accumulated patterns of Cu(II) porphyrin molecules on the surface of TiO2 and influence on photocatalytic activity. J Alloy Compd 626:252–259CrossRefGoogle Scholar
  16. 16.
    Shaislamov U, Krishnamoorthy K, Kim SJ, Abidov A, Allabergenov B, Kim S, Choi S, Suresh R, Ahmed WM, Lee HJ (2016) Highly stable hierarchical p-CuO/ZnO nanorod/nanobranch photoelectrode for efficient solar energy conversion. Int J Hydrog Energy 41:2253–2262CrossRefGoogle Scholar
  17. 17.
    Wang WN, Wu F, Myung Y, Niedzwiedzki DM, Im HS, Park J, Banerjee P, Biswas P (2015) Surface engineered CuO nanowires with ZnO islands for CO2 photoreduction. ACS Appl Mater Inter 7:5685–5692CrossRefGoogle Scholar
  18. 18.
    Wang JC, Zhang L, Fang WX, Ren J, Li YY, Yao HC, Wang JS, Li ZJ (2015) Enhanced photoreduction CO2 activity over direct Z-scheme alpha-Fe2O3/Cu2O heterostructures under visible light irradiation. ACS Appl Mater Inter 7:8631–8639CrossRefGoogle Scholar
  19. 19.
    Huang Q, Kang F, Liu H, Li Q, Xiao X (2013) Highly aligned Cu2O/CuO/TiO2 core/shell nanowire arrays as photocathodes for water photoelectrolysis. J Mater Chem A 1:2418–2425CrossRefGoogle Scholar
  20. 20.
    Paracchino A, Laporte V, Sivula K, Grätzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10:456–461CrossRefPubMedGoogle Scholar
  21. 21.
    Li Y, Yun X, Chen H, Zhang W, Li Y (2016) Facet-selective charge carrier transport, deactivation mechanism and stabilization of a Cu2O photo-electro-catalyst. Phys Chem Chem Phys 18(10):7023–7026CrossRefPubMedGoogle Scholar
  22. 22.
    Habisreutinger SN, Schmidt ML, Stolarczyk JK (2013) Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Edit 52:7372–7408CrossRefGoogle Scholar
  23. 23.
    Radecka M, Wnuk A, Trenczek-Zajac A, Schneider K, Zakrzewska K (2015) TiO2/SnO2 nanotubes for hydrogen generation by photoelectrochemical water splitting. Int J Hydrog Energy 40:841–851CrossRefGoogle Scholar
  24. 24.
    Li P, Zhang J, Wang H, Jing H, Xu J, Sui X, Hu H, Yin H (2014) The photoelectric catalytic reduction of CO2 to methanol on CdSeTe NSs/TiO2 NTs. Catal Sci Technol 4:1070–1077CrossRefGoogle Scholar
  25. 25.
    Zhang L, Cao H, Pen Q, Wu L, Hou G, Tang Y, Zheng G (2018) Embedded CuO nanoparticles@TiO2-nanotube arrays for photoelectrocatalytic reduction of CO2 to methanol. Electrochim Acta 283:1507–1513CrossRefGoogle Scholar
  26. 26.
    Cao H, Huang K, Wu L, Hou G, Tang Y, Zheng G (2016) Enhanced catalytic performance of Pt/TNTs composite electrode by reductive doping of TNTs. Appl Surf Sci 364:257–263CrossRefGoogle Scholar
  27. 27.
    Miao H, Hu X, Fan J, Li C, Sun Q, Hao Y, Zhang G, Bai J, Hou X (2015) Hydrothermal synthesis of TiO2 nanostructure films and their photoelectrochemical properties. Appl Surf Sci 358:418–424CrossRefGoogle Scholar
  28. 28.
    Xiao M, Musselman KP, Duley WW, Zhou NY (2016) Resistive switching memory of TiO2 nanowire networks grown on Ti foil by a single hydrothermal method. Nano-micro Lett 9:15CrossRefGoogle Scholar
  29. 29.
    Babu B, Mallikarjuna K, Reddy CV, Park J (2016) Facile synthesis of Cu@TiO2 core shell nanowires for efficient photocatalysis. Mater Lett 176:265–269CrossRefGoogle Scholar
  30. 30.
    Ai Z, Zhang L, Lee S, Ho W (2012) Interfacial hydrothermal synthesis of Cu@Cu2O core–shell microspheres with enhanced visible-light-driven photocatalytic activity. J Phys Chem C 113:20896–20902CrossRefGoogle Scholar
  31. 31.
    Zhou C, Cheng J, Hou K, Zhu Z, Zheng Y (2017) Preparation of CuWO4@Cu2O film on copper mesh by anodization for oil/water separation and aqueous pollutant degradation. Chem Eng J 307:803–811CrossRefGoogle Scholar
  32. 32.
    Zhou J, Guo L, Guo X, Mao J, Zhang S (2010) Selective hydrogenolysis of glycerol to propanediols on supported Cu-containing bimetallic catalysts. Green Chem 12:1835CrossRefGoogle Scholar
  33. 33.
    Zhao J, Li Y, Zhu Y, Wang Y, Wang C (2016) Enhanced CO2 photoreduction activity of black TiO2-coated Cu nanoparticles under visible light irradiation: role of metallic Cu. Appl Catal A 510:34–41CrossRefGoogle Scholar
  34. 34.
    Kim MH, Ebner JR, Friedman RM, Vannice MA (2002) Determination of metal dispersion and surface composition in supported Cu–Pt Catalysts. J Catal 208:381–392CrossRefGoogle Scholar
  35. 35.
    Fox EB, Velu S, Engelhard MH, Chin YH, Miller JT, Kropf J, Song C (2008) Characterization of CeO2-supported Cu–Pd bimetallic catalyst for the oxygen-assisted water–gas shift reaction. J Catal 260:358–370CrossRefGoogle Scholar
  36. 36.
    Macak JM, Gong BG, Hueppe M, Schmuki P (2007) Filling of TiO2 nanotubes by self-doping and electrodeposition. Adv Mater 19:3027–3031CrossRefGoogle Scholar
  37. 37.
    Liu J, Shi H, Shen Q, Guo C, Zhao G (2017) Efficiently photoelectrocatalyze CO2 to methanol using Ru(II)-pyridyl complex covalently bonded on TiO2 nanotube arrays. Appl Catal B 210:368–378CrossRefGoogle Scholar
  38. 38.
    Li P, Xu J, Jing H, Wu C, Peng H, Lu J, Yin H (2014) Wedged N-doped CuO with more negative conductive band and lower overpotential for high efficiency photoelectric converting CO2 to methanol. Appl Catal B 156-157(Complete):134–140CrossRefGoogle Scholar
  39. 39.
    Lemos SG, Oliveira RTS, Santos MC, Nascente PAP, Bulhões LOS, Pereira EC (2007) Electrocatalysis of methanol, ethanol and formic acid using a Ru/Pt metallic bilayer. J Power Sources 163:695–701CrossRefGoogle Scholar
  40. 40.
    Wang Y, Sheng ZM, Yang H, Jiang SP, Li CM (2010) Electrocatalysis of carbon black- or activated carbon nanotubes-supported Pd–Ag towards methanol oxidation in alkaline media. Int J Hydrog Energy 35:10087–10093CrossRefGoogle Scholar
  41. 41.
    Hu Y, Shao Q, Wu P, Zhang H, Cai C (2012) Synthesis of hollow mesoporous Pt–Ni nanosphere for highly active electrocatalysis toward the methanol oxidation reaction. Electrochem Commun 18:96–99CrossRefGoogle Scholar
  42. 42.
    Hu Y, Wu P, Zhang H, Cai C (2012) Synthesis of graphene-supported hollow Pt–Ni nanocatalysts for highly active electrocatalysis toward the methanol oxidation reaction. Electrochim Acta 85:314–321CrossRefGoogle Scholar
  43. 43.
    Feng JJ, Chen LX, Ma X, Yuan J, Chen JR, Wang AJ, Xu QQ (2017) Bimetallic AuPt alloy nanodendrites/reduced graphene oxide: one-pot ionic liquid-assisted synthesis and excellent electrocatalysis towards hydrogen evolution and methanol oxidation reactions. Int J Hydrog Energy 42:1120–1129CrossRefGoogle Scholar
  44. 44.
    Yang F, Cheng K, Wu T, Zhang Y, Yin J, Wang G, Cao D (2013) Dendritic palladium decorated with gold by potential pulse electrodeposition: enhanced electrocatalytic activity for H2O2 electroreduction and electrooxidation. Electrochim Acta 99:54–61CrossRefGoogle Scholar
  45. 45.
    Cao H, Fan Z, Hou G, Tang Y, Zheng G (2014) Ball-flower-shaped Ni nanoparticles on Cu modified TiO2 nanotube arrays for electrocatalytic oxidation of methanol. Electrochim Acta 125:275–281CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringZhejiang University of TechnologyHangzhouChina

Personalised recommendations