Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Unassisted solar water splitting using a Cu2O/Ni(OH)2-ZnO/Au tandem photoelectrochemical cell


A tandem photoelectrochemical (PEC) cell consisting of a Cu2O/Ni(OH)2 photocathode and a ZnO/Au photoanode was investigated for unassisted solar water splitting. It was found that the two photoelectrodes were optically matched in UV and visible range, according to the absorbed luminous flux. Compared with the bare Cu2O photocathode, the Cu2O/Ni(OH)2 photocathode had larger photocurrent and smaller onset potential, because the Ni(OH)2 electrocatalysts reduced charge recombination and the overpotential for hydrogen evolution. The tandem PEC cell achieved a photoconversion efficiency of about 0.20% under 1 sun illumination. The results indicate that metal oxide semiconductors synthesized via facile and scalable solution methods are promising photoelectrode materials for unassisted solar water splitting.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Roger I, Shipman MA, Symes MD (2017) Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem 1:0003

  2. 2.

    Jiang C, Moniz SJA, Wang A, Zhang T, Tang J (2017) Photoelectrochemical devices for solar water splitting-materials and challenges. Chem Soc Rev 46:4645–4660

  3. 3.

    Seger B, Castelli IE, Vesborg PCK, Jacobsen KW, Hansen O, Chorkendorff I (2014) 2-Photon tandem device for water splitting: comparing photocathode first versus photoanode first designs. Energy Environ Sci 7:2397–2413

  4. 4.

    Hu S, Xiang C, Haussener S, Berger AD, Lewis NS (2013) An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ Sci 6:2984–2993

  5. 5.

    Zeng Q, Bai J, Li J, Li Y, Li X, Zhou B (2014) Combined nanostructured Bi2S3/TNA photoanode and Pt/SiPVC photocathode for efficient self-biasing photoelectrochemical hydrogen and electricity generation. Nano Energy 9:152–160

  6. 6.

    Lai Y-H, Palm DW, Reisner E (2015) Multifunctional coatings from scalable single-source precursor chemistry in tandem photoelectrochemical water splitting. Adv Energy Mater 5:1501668

  7. 7.

    Bai J, Li Y, Wang R, Huang K, Zeng Q, Li J, Zhou B (2015) A novel 3D ZnO/Cu2O nanowire photocathode material with highly efficient photoelectrocatalytic performance. J Mater Chem A 3:22996–23002

  8. 8.

    Paracchino A, Laporte V, Sivula K, Gratzel M, Thimsen E (2011) Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater 10(6):456–461

  9. 9.

    Zhang Z, Wang P (2012) Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J Mater Chem 22:2456–2464

  10. 10.

    de Jongh PE, Vanmaekelbergh D, Kelly JJ (2000) Photoelectrochemistry of electrodeposited Cu2O. J Electrochem Soc 147:486–489

  11. 11.

    Lin C-Y, Lai Y-H, Mersch D, Reisner E (2012) Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem Sci 3:3482–3487

  12. 12.

    Yu J, Hai Y, Cheng B (2011) Enhanced photocatalytic H2-production activity of TiO2 by Ni(OH)2 cluster modification. J Phys Chem C 115:4953–4958

  13. 13.

    Ran J, Yu J, Jaroniec M (2011) Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation. Green Chem 13:2708–2713

  14. 14.

    Zeng Q, Lyu L, Gao Y, Chang S, Hu C (2018) A self-sustaining monolithic photoelectrocatalytic/photovoltaic system based on a WO3/BiVO4 photoanode and Si PVC for efficiently producing clean energy from refractory organics degradation. Appl Catal B Environ 238:309–317

  15. 15.

    Esposito DV, Forest RV, Chang Y, Gaillard N, McCandless BE, Hou S, Lee KH, Birkmire RW, Chen JG (2012) Photoelectrochemical reforming of glucose for hydrogen production using a WO3-based tandem cell device. Energy Environ Sci 5:9091–9099

  16. 16.

    Coridan RH, Shaner M, Wiggenhorn C, Brunschwig BS, Lewis NS (2013) Electrical and photoelectrochemical properties of WO3/Si tandem photoelectrodes. J Phys Chem C 117:6949–6957

  17. 17.

    Ingler WB, Khan SUM (2006) A self-driven p/n-Fe2O3 tandem photoelectrochemical cell for water splitting. Electrochem Solid-State Lett 9:G144

  18. 18.

    Jang JW, Du C, Ye Y, Lin Y, Yao X, Thorne J, Liu E, McMahon G, Zhu J, Javey A, Guo J, Wang D (2015) Enabling unassisted solar water splitting by iron oxide and silicon. Nat Commun 6:7447

  19. 19.

    Miyamoto H, Matsuzaki K, Yamaguchi A, Miyauchi M (2018) Visible-light-active photoelectrochemical Z-scheme system based on top 5 clarke-number elements. ACS Appl Energy Mater 1:5954–5959

  20. 20.

    Kim JH, Kaneko H, Minegishi T, Kubota J, Domen K, Lee JS (2016) Overall photoelectrochemical water splitting using tandem cell under simulated sunlight. ChemSusChem 9(1):61–66

  21. 21.

    Bornoz P, Abdi FF, Tilley SD, Dam B, van de Krol R, Graetzel M, Sivula K (2014) A bismuth vanadate–cuprous oxide tandem cell for overall solar water splitting. J Phys Chem C 118:16959–16966

  22. 22.

    Pan L, Kim JH, Mayer MT, Son M-K, Ummadisingu A, Lee JS, Hagfeldt A, Luo J, Grätzel M (2018) Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nat Catal 1:412–420

  23. 23.

    Huang D, Wang K, Yu L, Nguyen TH, Ikeda S, Jiang F (2018) Over 1% efficient unbiased stable solar water splitting based on a sprayed Cu2ZnSnS4 photocathode protected by a HfO2 photocorrosion-resistant film. ACS Energy Lett 3:1875–1881

  24. 24.

    Mor GK, Varghese OK, Wilke RH, Sharma S, Shankar K, Latempa TJ, Choi KS, Grimes CA (2008) P-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett 8:1906–1911

  25. 25.

    Ida S, Yamada K, Matsunaga T, Hagiwara H, Matsumoto Y, Ishihara T (2010) Preparation of p-type CaFe2O4 photocathodes for producing hydrogen from water. J Am Chem Soc 132:17343–17345

  26. 26.

    Fan K, Li F, Wang L, Daniel Q, Gabrielsson E, Sun L (2014) Pt-free tandem molecular photoelectrochemical cells for water splitting driven by visible light. Phys Chem Chem Phys 16:25234–25240

  27. 27.

    Bai Z, Zhang Y (2017) A Cu2O/Cu2S-ZnO/CdS tandem photoelectrochemical cell for self-driven solar water splitting. J Alloys Compd 698:133–140

  28. 28.

    Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y (2009) Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett 9:2331–2336

  29. 29.

    Yoon J-S, Lee J-W, Sung Y-M (2019) Enhanced photoelectrochemical properties of Z-scheme ZnO/p-n Cu2O PV-PEC cells. J Alloys Compd 771:869–876

  30. 30.

    Bai Z, Zhang Y (2016) Self-powered UV-visible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions. J Alloys Compd 675:325–330

  31. 31.

    Chen HM, Chen CK, Chang YC, Tsai CW, Liu RS, Hu SF, Chang WS, Chen KH (2010) Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: true efficiency for water splitting. Angew Chem 49:5966–5969

  32. 32.

    Hsu Y-K, Yu C-H, Chen Y-C, Lin Y-G (2013) Fabrication of coral-like Cu2O nanoelectrode for solar hydrogen generation. J Power Sources 242:541–547

  33. 33.

    Zhang X, Liu Y, Kang Z (2014) 3D branched ZnO nanowire arrays decorated with plasmonic au nanoparticles for high-performance photoelectrochemical water splitting. ACS Appl Mater Interfaces 6:4480–4489

  34. 34.

    Bae S-H, Kim J-E, Randriamahazaka H, Moon S-Y, Park J-Y, Oh I-K (2017) Seamlessly conductive 3D nanoarchitecture of core-shell Ni-Co nanowire network for highly efficient oxygen evolution. Adv Energy Mater 7:1601492

  35. 35.

    Wang T, Lv R, Zhang P, Li C, Gong J (2015) Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. Nanoscale 7:77–81

  36. 36.

    Bai Z, Yan X, Chen X, Liu H, Shen Y, Zhang Y (2013) ZnO nanowire array ultraviolet photodetectors with self-powered properties. Curr Appl Phys 13:165–169

  37. 37.

    Zhang H, Ming J, Gu Q, Xu C, Ding Z, Yuan R, Zhang Z, Lin H, Wang X, Long J (2019) High-rate,tunable syngas production with artificial photosynthetic cells. Angew Chem Int Ed 58(23):7718–7722

  38. 38.

    Zhang H, Ma L, Ming J, Liu B, Zhao Y, Hou Y, Ding Z, Xu C, Zhang Z, Long J (2019) Amorphous Ta2OxNy-enwrapped TiO2 rutile nanorods for enhanced solar photoelectrochemical water splitting. Appl Catal B Environ 243:481–489

  39. 39.

    Liu S-Q, Wen H-R, Ying G, Zhu Y-W, Fu X-Z, Sun R, Wong C-P (2018) Amorphous Ni(OH)2 encounter with crystalline CuS in hollow spheres: a mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis. Nano Energy 44:7–14

  40. 40.

    Du X, Yang Z, Li Y, Gong Y, Zhao M (2018) Controlled synthesis of Ni(OH)2/Ni3S2 hybrid nanosheet arrays as highly active and stable electrocatalysts for water splitting. J Mater Chem A 6:6938–6946

  41. 41.

    Chigane M, Ishikawa M, Inoue H (2000) Further XRD characterization of electrochromic nickel oxide thin films prepared by anodic deposition. Sol Energy Mater Sol Cells 64:65–72

  42. 42.

    Li Q, Bian J, Zhang N, Ng DHL (2015) Loading Ni(OH)2 on the Ti-doped hematite photoanode for photoelectrochemical water splitting. Electrochim Acta 155:383–390

  43. 43.

    Mao Y, Yang H, Chen J, Chen J, Tong Y, Wang X (2014) Significant performance enhancement of ZnO photoanodes from Ni(OH)2 electrocatalyst nanosheets overcoating. Nano Energy 6:10–18

  44. 44.

    Formal F, Sivula K, Gratzel M (2012) The transient photocurrent and photovoltage behavior of a hematite photoanode under working conditions and the influence of surface treatments. J Phys Chem C 116:26707–26720

  45. 45.

    Yin X, Liu Q, Yang Y, Liu Y, Wang K, Li Y, Li D, Qiu X, Li W, Li J (2019) An efficient tandem photoelectrochemical cell composed of FeOOH/TiO2/BiVO4 and Cu2O for self-driven solar water splitting. Int J Hydrog Energy 44:594–604

  46. 46.

    Xu P, Feng J, Fang T, Zhao X, Li Z, Zou Z (2016) Photoelectrochemical cell for unassisted overall solar water splitting using a BiVO4 photoanode and Si nanoarray photocathode. RSC Adv 6:9905–9910

  47. 47.

    Wu M, Chen WJ, Shen YH, Huang FZ, Li CH, Li SK (2014) In situ growth of matchlike ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water splitting. ACS Appl Mater Interfaces 6:15052–15060

  48. 48.

    Meng L, Chen Z, Ma Z, He S, Hou Y, Li H, Yuan R, Huang X, Wang X, Wang X, Long J (2018) Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energy Environ Sci 11:294–298

  49. 49.

    Zhao J, Liu B, Meng L, He S, Yuan R, Hou Y, Ding Z, Lin H, Zhang Z, Wang X, Long J (2019) Plasmonic control of solar-driven CO2 conversion at the metal/ZnO interfaces. Appl Catal B Environ 256:117823

Download references


This work was financially supported by the Natural Science Foundation of China (NSFC) (51602021) and the Fundamental Research Funds for the Central Universities (FRF-TP-18-023A2).

Author information

Correspondence to Zhiming Bai or Yinghua Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedicated to the memory of Ivo Alexandre Hümmelgen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bai, Z., Liu, J., Zhang, Y. et al. Unassisted solar water splitting using a Cu2O/Ni(OH)2-ZnO/Au tandem photoelectrochemical cell. J Solid State Electrochem 24, 321–328 (2020).

Download citation


  • Unassisted
  • Water splitting
  • Cu2O
  • Ni(OH)2
  • ZnO