Advertisement

Fabrication of Ti/black TiO2-PbO2 micro/nanostructures with tunable hydrophobic/hydrophilic characteristics and their photoelectrocatalytic performance

  • Jiahui Lyu
  • Guoji Sun
  • Liyan Zhu
  • Hongchao MaEmail author
  • Chun Ma
  • Xiaoli Dong
  • Yinghuan FuEmail author
Original Paper

Abstract

Herein, a novel Ti/black TiO2-PbO2 micro/nanostructured photoanode with tunable hydrophobic/hydrophilic characteristics was fabricated via the facile hydrothermal strategy. The tunable hydrophobic/hydrophilic feature of black TiO2/PbO2 architecture is realized by changing loadings of flower-like PbO2 microspheres. Interestingly, the density functional theory (DFT) calculations demonstrated that H2O molecules prefer to adsorb on the surface of black TiO2 nanosheets, and easier to form hydroxyl radicals on the surface of PbO2. Thus, a cooperation action between black TiO2 and PbO2 regarding the generation of hydroxyl radical (·OH) by water photoelectrolysis occurs as follows: the black TiO2 nanosheet layer can be acted as the supply station of water and rapidly transfer the water molecules to neighboring PbO2 (acted as generation center of hydroxyl radical) to generate hydroxyl radical. Obviously, the division of labor and cooperation between black TiO2 and PbO2 is helpful to improve the generation efficiency of hydroxyl radical. Furthermore, the constructed black TiO2-PbO2 architectures have large electroactive areas, low charge transfer resistance, and high separation efficiency of induced carriers. The black TiO2-PbO2 micro/nanostructure obtained under optimum conditions (Ti/black TiO2-PbO2-180 min) has the highest PEC removal rate of dye (86.24%); an enhancement of approximate 30% is achieved as compared with that of pure black TiO2 (65.20%). These new findings not only make Ti/black TiO2-PbO2 a more attractive photoanode but, most significantly, also provide promising strategy for designing photoanode.

Graphical abstract

A novel Ti/black TiO2-PbO2 micro/nanostructured photoanode with tunable hydrophobic/hydrophilic characteristics was fabricated via the facile hydrothermal strategy. The tunable hydrophobic/hydrophilic feature of black TiO2/PbO2 architecture is realized by changing loadings of flower-like PbO2 microspheres. Interestingly, the density functional theory (DFT) calculations demonstrated that H2O molecules prefer to adsorb on the surface of black TiO2 nanosheets, and easier to form hydroxyl radicals on the surface of PbO2. Thus, a cooperation action between black TiO2 and PbO2 regarding the generation of hydroxyl radical (·OH) by water photoelectrolysis occurs as follows: the black TiO2 nanosheet layer can be acted as the supply station of water and rapidly transfer the water molecules to neighboring PbO2 (acted as generation center of hydroxyl radical) to generate hydroxyl radical. Obviously, the division of labor and cooperation between black TiO2 and PbO2 is helpful to improve the generation efficiency of hydroxyl radical. Furthermore, the constructed black TiO2-PbO2 architectures have large electroactive areas, low charge transfer resistance, and high separation efficiency of induced carriers. Thus, the black TiO2-PbO2 micro/nanostructured photoanode exhibited higher photoelectrochemical (PEC) activity, better reproducibility, and obvious photoelectric synergism for the decolorization of dye (reactive brilliant blue KN-R aqueous solution), as compared with black TiO2.

Keywords

Photoelectro-oxidation Hydrophobic/hydrophilic characteristics DFT calculation Black TiO2 PbO2 

Notes

Funding information

This work was supported by the National Natural Science Foundation of China (21875026, 21878031), the Program for Liaoning Excellent Talents in University (LR2014013), the Science and Technology Foundation of Liaoning Province (201602052), the Natural Science Foundation of Liaoning Province (20170520427), and supported by Liaoning Revitalization Talents Program (XLYC1802124). The Project is also sponsored by Liaoning BaiQianWan Talents Program, the scientific research fund of the educational department of Liaoning province (J2019013).

References

  1. 1.
    Li GS, Lian ZC, Wang WC, Zhang DQ, Li HX (2016) Nano Energy 19:446–454CrossRefGoogle Scholar
  2. 2.
    Martinez-Huitle CA, Ferro S (2006) Chem Soc Rev 35(12):1324–1340CrossRefGoogle Scholar
  3. 3.
    Yang C, Feng JR, Zhang YL, Yang QF, Li PH, Arlt T, Lai FL, Wang JJ, Yin CC, Wang W, Qian GY, Cui LF, Yang WJ, Chen YN, Manke I (2019) Small:1903720Google Scholar
  4. 4.
    Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) Appl Catal B-Environ 125:331–349CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Cui WQ, An WJ, Liu L, Liang YH, Zhu YF (2018) Appl Catal B-Environ 221:36–46CrossRefGoogle Scholar
  6. 6.
    Wang X, Xia R, Muhire E, Jiang SB, Huo XJ, Gao MZ (2018) Appl Surf Sci 459:9–15CrossRefGoogle Scholar
  7. 7.
    Baba K, Bulou S, Quesada-Gonzalez M, Bonot S, Collard D, Boscher ND, Choquet P (2017) ACS Appl Mater Interfaces 9(47):41200–41209CrossRefGoogle Scholar
  8. 8.
    Yang GX, Yang D, Yang PP, Lv RC, Li CX, Zhong CN, He F, Gai SL, Lin J (2015) Chem Mater 27:7957–7968CrossRefGoogle Scholar
  9. 9.
    Chen T, Hao Q, Yang WJ, Xie CL, Chen DM, Ma C, Yao WQ, Zhu YF (2018) Appl Catal B-Environ 237:442–448CrossRefGoogle Scholar
  10. 10.
    Zhu LY, Ma HC, Han HB, Fu YH, Ma C, Yu ZH, Dong XL (2018) RSC Adv 8:18992–19000CrossRefGoogle Scholar
  11. 11.
    Zhu L, Tian Y, Li M, Ma H, Ma C, Dong X, Zhang X (2017) J Appl Electrochem 47:1045–1056CrossRefGoogle Scholar
  12. 12.
    Lyu JH, Han HB, Wu Q, Ma HC, Ma C, Dong XL, Fu YH (2019) J Solid State Electrochem 23:847–859CrossRefGoogle Scholar
  13. 13.
    Yang C, Feng JR, Lv F, Zhou JH, Lin CF, Wang K, Zhang YL, Yang Y, Wang W, Li JB, Guo SJ (2018) Adv Mater 30:8Google Scholar
  14. 14.
    Li YB, Zhao C (2017) ACS Catal 7:2535–2541CrossRefGoogle Scholar
  15. 15.
    Wang P, Hayashi T, Meng Qa, Wang Q, Liu H, Hashimoto K, Jiang L (2017) Small 13:1601250Google Scholar
  16. 16.
    Chen L, Sheng X, Wang D, Liu J, Sun R, Jiang L, Feng X (2018) Adv Funct Mater 28:1801483CrossRefGoogle Scholar
  17. 17.
    Sheng X, Liu Z, Zeng R, Chen L, Feng X, Jiang L (2017) J Am Chem Soc 139(36):12402–12405CrossRefGoogle Scholar
  18. 18.
    Li T, Wang JJ, Wang FL, Zhang LS, Jiang YY, Arandiyan H, Li H (2019) ChemCatChem 11:1576–1586CrossRefGoogle Scholar
  19. 19.
    Kresse G, Furthmuller J (1996) Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  20. 20.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169–11186CrossRefGoogle Scholar
  21. 21.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758–1775CrossRefGoogle Scholar
  22. 22.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396–1396CrossRefGoogle Scholar
  23. 23.
    Perdew JP, Emzerhof M, Burke K (1996) J Chem Phys 105:9982–9985CrossRefGoogle Scholar
  24. 24.
    Chadi DJ (1977) Phys Rev B 16:1746–1747CrossRefGoogle Scholar
  25. 25.
    Yang J, Yu C, Hu C, Wang M, Li S, Huang H, Bustillo K, Han X, Zhao C, Guo W, Zeng Z, Zheng H, Qiu J (2018) Adv Funct Mater.  https://doi.org/10.1002/adfm.201803272 CrossRefGoogle Scholar
  26. 26.
    Wang X, Wu Q, Ma H, Ma C, Yu Z, Fu Y, Dong X (2019) Sol Energy Mater Sol Cells 191:381–388CrossRefGoogle Scholar
  27. 27.
    Kou T, Wang S, Hauser JL, Chen M, Oliver SRJ, Ye Y, Guo J, Li Y (2019) ACS Energy Lett 4:622–628CrossRefGoogle Scholar
  28. 28.
    Yin Z, Zheng Y, Wang H, Li J, Zhu Q, Wang Y, Ma N, Hu G, He B, Knop-Gericke A, Schlog R, Ma D (2017) ACS Nano 11(12):12365–12377CrossRefGoogle Scholar
  29. 29.
    Zhao G, Zhang Y, lei Y, Lv B, Gao J, Zhang Y, Li D (2010) Environ Sci Technol 44:1754–1759Google Scholar
  30. 30.
    Krbal M, Sopha H, Pohl D, Benes L, Damm C, Rellinghaus B, Kupcik J, Bezdicka P, Subrt J, Macak JM (2018) Electrochim Acta 264:393–399CrossRefGoogle Scholar
  31. 31.
    Xu H, Wei J, Zhang M, Liu C, Shiraishi Y, Wang C, Du Y (2018) Nanoscale 10(39):18468–18472CrossRefGoogle Scholar
  32. 32.
    Zhu YK, Li JZ, Dong CL, Ren J, Huang YC, Zhao DM, Cai RS, Wei DX, Yang XF, Lv CX, Theis W, Bu YY, Han W, Shen SH, Yang DJ (2019) Appl Catal B-Environ 255:117764CrossRefGoogle Scholar
  33. 33.
    Lindsey ME, Tarr MA (2000) Environ Sci Technol 34:444–449CrossRefGoogle Scholar
  34. 34.
    Bessegato GG, Guaraldo TT, de Brito JF, Brugnera MF, Zanoni MVB (2015) Electrocatalysis 6:415–441CrossRefGoogle Scholar
  35. 35.
    Barnard AS, Zapol P (2004) Phys Rev B:70Google Scholar
  36. 36.
    Gibson G, Morgan A, Hu P, Lin WF (2016) Chem Phys Lett 654:46–51CrossRefGoogle Scholar
  37. 37.
    Liu ZH, Wang T, Yu X, Geng ZX, Sang YH, Liu H (2017) Mat Chem Front 1:1989–1994CrossRefGoogle Scholar
  38. 38.
    Yang D, Gulzar A, Yang GX, Gai SL, He F, Dai YL, Zhong CN, Yang PP (2017) Small 13:1703007CrossRefGoogle Scholar
  39. 39.
    Liu Z, Tan H, Xin J, Duan J, Su X, Hao P, Xie J, Zhan J, Zhang J, Wang JJ, Liu H (2018) ACS Appl Mater Interfaces 10:3699–3706CrossRefGoogle Scholar
  40. 40.
    Zhu YK, Ren J, Yang XF, Chang GJ, Bu YY, Wei GD, Han W, Yang DJ (2017) J Mater Chem A 5:9952–9959CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Light Industry & Chemical EngineeringDalian Polytechnic UniversityDalianPeople’s Republic of China
  2. 2.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology Shenzhen Graduate SchoolShenzhenPeople’s Republic of China

Personalised recommendations