Journal of Solid State Electrochemistry

, Volume 23, Issue 12, pp 3275–3285 | Cite as

Microgravimetric study of electrochemical properties of PEDOT/WO3 composite films in diluted sulfuric acid

  • D. V. Zhuzhelskii
  • E. G. Tolstopjatova
  • A. I. Volkov
  • S. N. Eliseeva
  • V. V. KondratievEmail author
Original Paper


Poly-3,4-ethylenedioxythiophene composite films with tungsten oxide (PEDOT/WO3) were obtained by potentiodynamic deposition of tungsten oxide from acidic metastable solution of isopolytungstates into poly-3,4-ethylenedioxythiophene film, pre-deposited on an Au-quartz crystal. The electrochemical deposition of tungsten oxide into poly-3,4-ethylenedioxythiophene was investigated by electrochemical quartz microgravimetry (EQCM), the masses of PEDOT and tungsten oxide deposits were estimated. The electrochemical behavior of PEDOT/WO3 composite films with different masses of deposited tungsten oxide was studied by cyclic voltammetry and EQCM in the 0.5 M sulfuric acid electrolyte. The change of the fraction of tungsten oxide in the PEDOT/WO3 composite film results in the change of the slope of the ΔfE dependency in the potential region, corresponding to WVI/WV redox process. It is due to an oppositely directed mass transport (anion and cation) during the redox process in the composite film. The average molar mass of transferred species involved in the redox process in tungsten oxide was estimated to be 26 ± 4 g mol−1. It was shown that the fraction of electrochemically active tungsten oxide deposit is dependent on its mass in the composite, with increase of the mass of tungsten oxide in PEDOT/WO3, the fraction of electroactive tungsten oxide WO3 decreases due to decrease in its active area.


Tungsten oxide Poly-3,4-ethylenedioxythiophene Electrochemical deposition Cyclic voltammetry EQCM Composite material 


Funding information

This work was supported by the Saint-Petersburg State University (grant no. 26455158) and Russian Foundation for Basic Research (grant no. 19-03-00593).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lokhande VC, Lokhande AC, Lokhande CD, Kim JH, Ji T (2016) Supercapacitive composite metal oxide electrodes formed with carbon, metal oxides and conducting polymers. J Alloys Compd 685:381–403CrossRefGoogle Scholar
  2. 2.
    Meng Q, Cai K, Chen Y, Chen L (2017) Research progress on conducting polymer-based supercapacitor electrode materials. Nanomater Energy 36:268–285CrossRefGoogle Scholar
  3. 3.
    Holze R (2017) Metal oxide/conducting polymer hybrids for application in supercapacitors. In: Dubal DP, Gomez-Romero P (eds) Metal oxides in supercapacitors. Elsevier, Amsterdam, pp 219–245CrossRefGoogle Scholar
  4. 4.
    Granqvist CG, Avendaño E, Azens A (2003) Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films 442:201–211CrossRefGoogle Scholar
  5. 5.
    Somani PR, Radhakrishnan S (2002) Electrochromic materials and devices: present and future. Mater Chem Phys 77:117–133CrossRefGoogle Scholar
  6. 6.
    Monk PMS, Mortimer RJ, Rosseinsky DR (2007) Electrochromism and electrochromic devices. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  7. 7.
    Darmawi S, Burkhardt S, Leichtweiss T, Weber DA, Wenzel S, Janek J, Elm MT, Klar PJ (2015) Correlation of electrochromic properties and oxidation states in nanocrystalline tungsten trioxide. Phys Chem Chem Phys 17(24):15903–15911CrossRefGoogle Scholar
  8. 8.
    Chen KY, Tseung A (1996) Effect of nafion dispersion on the stability of Pt/WO3 electrodes. J Electrochem Soc 143:2703–2707CrossRefGoogle Scholar
  9. 9.
    Komaba S, Kumagai N, Kato K, Yashiro H (2000) Hydrothermal synthesis of hexagonal tungsten trioxide from Li2WO4 solution and electrochemical lithium intercalation into the oxide. Solid State Ionics 135:193–197CrossRefGoogle Scholar
  10. 10.
    Freedman ML (1959) The tungstic acids. J Am Chem Soc 81:3834–3839CrossRefGoogle Scholar
  11. 11.
    Reichman B, Bard AJ (1979) The electrochromic process at WO3 electrodes prepared by vacuum evaporation and anodic oxidation of W. J Electrochem Soc 126:583–591CrossRefGoogle Scholar
  12. 12.
    Kulesza PJ, Faulkner LR (1989) Electrocatalytic properties of bifunctional Pt/W(VI,V) oxide microstructures electrodeposited on carbon substrates. J Electroanal Chem 259:81–98CrossRefGoogle Scholar
  13. 13.
    Ling H, Liu L, Lee PS, Mandler D, Lu X (2015) Layer-by-layer assembly of PEDOT:PSS and WO3 nanoparticles: enhanced electrochromic coloration efficiency and mechanism studies by scanning electrochemical microscopy. Electrochim Acta 174:57–65CrossRefGoogle Scholar
  14. 14.
    Ling H, Lu J, Phua S, Liu H, Liu L, Huang Y, Mandler D, Lee PS, Lu X (2014) One-pot sequential electrochemical deposition of multilayer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonic acid)/tungsten trioxide hybrid films and their enhanced electrochromic properties. J Mater Chem A 2:2708–2717CrossRefGoogle Scholar
  15. 15.
    Wang F, Zhan X, Cheng Z, Wang Z, Wang Q, Xu K, Safdar M, He J (2014) Tungsten oxide@polypyrrole core-shell nanowire arrays as novel negative electrodes for asymmetric supercapacitors. Small 11:749–755CrossRefGoogle Scholar
  16. 16.
    Asim N, Syuhami MF, Badiei M, Ambar Yarmo M (2014) WO3 modification by synthesis of nanocomposites. APCBEE Procedia 9:175–180CrossRefGoogle Scholar
  17. 17.
    Bernard MC, Hugot-Le Goff A, Zeng W (1998) Elaboration and study of a PANI/PAMPS/WO3 all solid-state electrochromic device. Electrochim Acta 44:781–796CrossRefGoogle Scholar
  18. 18.
    Li B, Li X, Li W, Wang Y, Uchaker E, Pei Y, Cao X, Li S, Huang B, Cao G (2016) Mesoporous tungsten trioxide polyaniline nanocomposite as an anode material for high-performance lithium-ion batteries. Chem Nano Mat 2:281–289Google Scholar
  19. 19.
    Szymanska D, Rutkowska IA, Adamczyk L, Zoladek S, Kulesza PJ (2010) Effective charge propagation and storage in hybrid films of tungsten oxide and poly(3,4-ethylenedioxythiophene). J Solid State Electrochem 14:2049–2056CrossRefGoogle Scholar
  20. 20.
    Plieth W, Bund A, Rammelt U, Neudeck S, Duc LM (2006) The role of ion and solvent transport during the redox process of conducting polymers. Electrochim Acta 51:2366–2372CrossRefGoogle Scholar
  21. 21.
    Niu L, Kvarnström C, Ivaska A (2004) Mixed ion transfer in redox processes of poly(3,4-ethylenedioxythiophene). J Electroanal Chem 569:151–160CrossRefGoogle Scholar
  22. 22.
    Hillman AR, Daisley SJ, Bruckenstein S (2007) Kinetics and mechanism of the electrochemical p-doping of PEDOT. Electrochem Commun 9:1316–1322CrossRefGoogle Scholar
  23. 23.
    Babinec SJ (1992) A quartz crystal microbalance analysis of ion insertion into WO3. Sol Energy Mater Sol Cells 25:269–291CrossRefGoogle Scholar
  24. 24.
    Martín AJ, Maffiotte C, Chaparro AM (2015) Mechanisms for the growth of thin films of WO3 and bronzes from suspensions of WO3 nanoparticles. ECS Trans 64(29):43–56CrossRefGoogle Scholar
  25. 25.
    Bueno PR, Faria RC, Avellaneda CO, Leite ER, Bulhões LOS (2003) Li+ insertion into pure and doped amorphous WO3 films. Correlations between coloration kinetics, charge and mass accumulation. Solid State Ionics 158:415–426CrossRefGoogle Scholar
  26. 26.
    Kim DJ, Pyun SI, Choi YM (1998) A study on the hydrogen intercalation into rf-magnetron sputtered amorphous WO3 film using cyclic voltammetry combined with electrochemical quartz crystal microbalance technique. Solid State Ionics 109:81–87CrossRefGoogle Scholar
  27. 27.
    Ohtsuka T, Wakabayashi T, Einaga H (1994) Electrochemical quartz crystal microbalance study of polypyrrole and tungstate polyanion composite films. J Electroanal Chem 377:107–114CrossRefGoogle Scholar
  28. 28.
    Zhuzhelskii DV, Tolstopjatova EG, Eliseeva SN, Ivanov AV, Miao S, Kondratiev VV (2019) Electrochemical properties of PEDOT/WO3 composite films for high performance supercapacitor application. Electrochim Acta 299:182–190CrossRefGoogle Scholar
  29. 29.
    Sauerbrey G (1959) Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z Phys 155:206–222CrossRefGoogle Scholar
  30. 30.
    Nizhegorodova AO, Eliseeva SN, Tolstopjatova EG, Lang GG, Zalka D, Ujvari M, Kondratiev VV (2018) EQCM study of redox properties of PEDOT/MnO2 composite films in aqueous electrolytes. J Solid State Electrochem 22:2357–2366CrossRefGoogle Scholar
  31. 31.
    Tolstopjatova EG, Eliseeva SN, Nizhegorodova AO, Kondratiev VV (2015) Electrochemical properties of composite electrodes, prepared by spontaneous deposition of manganese oxide into poly-3,4-ethylendioxythiophene. Electrochim Acta 173:40–49CrossRefGoogle Scholar
  32. 32.
    QCM200 (2004) Operation and service manual. Stanford Research Systems, IncGoogle Scholar
  33. 33.
    Bobacka J, Lewenstam A, Ivaska A (2000) Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. J Electroanal Chem 489:17–27CrossRefGoogle Scholar
  34. 34.
    Kondratiev VV, Pogulaichenko NA, Tolstopjatova EG, Malev VV (2011) Hydrogen peroxide electroreduction on composite PEDOT films with included gold nanoparticles. J Solid State Electrochem 15(11–12):2383–2393CrossRefGoogle Scholar
  35. 35.
    Eliseeva SN, Malev VV, Kondrat’ev VV (2009) Electrochemical properties of composite films based on poly-3,4-ethylenedioxythiophene with inclusions of metallic palladium. Russ J Electrochem 45:1045–1051CrossRefGoogle Scholar
  36. 36.
    Bund A, Neudeck S (2004) Effect of the solvent and the anion on the doping/dedoping behavior of poly(3,4-ethylenedioxythiophene) films studied with the electrochemical quartz microbalance. J Phys Chem B 108:17845–17850CrossRefGoogle Scholar
  37. 37.
    Zhuzhel’skii DV, Yalda KD, Spiridonov VN, Apraksin RV, Kondrat’ev VV (2018) Synthesis and special features of electrochemical behavior of tungsten oxide deposited on various substrates. Russ J Gen Chem 88:520–527CrossRefGoogle Scholar
  38. 38.
    Pugolovkin LV, Vassiliev SY, Borzenko MI, Laurinavichyute VK, Tsirlina GA (2013) Speciation in strongly acidic metastable solutions of oxotungstate(VI) compounds. Russ Chem Bull 62:1317–1322CrossRefGoogle Scholar
  39. 39.
    Agrisuelas J, Gabrielli C, García-Jareño JJ, Perrot H, Sel O, Vicente F (2015) Electrochemically induced free solvent transfer in thin poly(3,4- ethylenedioxythiophene) films. Electrochim Acta 164:21–30CrossRefGoogle Scholar
  40. 40.
    Jiang H, Hong JJ, Wu X, Surta TW, Qi Y, Dong S, Li Z, Leonard DP, Holoubek JJ, Wong JC, Razink JJ, Zhang X, Ji X (2018) Insights on the proton insertion mechanism in the electrode of hexagonal tungsten oxide hydrate. J Am Chem Soc 140(37):11556–11559CrossRefGoogle Scholar
  41. 41.
    Bóbics L, Sziráki L, Láng GG (2008) The impedance related to the electrochemical hydrogen insertion into WO3 films – on the applicability of the diffusion-trapping model. Electrochem Commun 10:283–287CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Saint Petersburg State University, Institute of ChemistrySaint PetersburgRussia

Personalised recommendations