Advertisement

Structural and proton conductivity study of BaZr1-xRExO3-δ(RE = Dy, Sm) ceramics for intermediate temperature solid oxide fuel cell electrolyte

  • Avishek Satapathy
  • Ela SinhaEmail author
  • S.K. Rout
Original Paper

Abstract

Proton-conducting BaZr1-xRExO3-δ (RE = Dy, Sm) (x = 0.05, 0.10, 0.15, 0.20) ceramics were synthesized via a conventional mixed oxide reaction route. The X-ray diffraction patterns indicated that the studied compositions crystallized as a single phase in the cubic space group \( Pm\overline{3}m \). The site preference of the rare earth dopant has been proved by Rietveld analysis of the XRD profile, and the site occupancies have been derived for the studied compositions. Thermogravimetric study of the pre-hydrated samples showed a substantial mass loss, proving the oxygen vacancy filling by H2O after hydration of the samples. Dense microstructures of sintered ceramics are observed, with the Dy-doped compositions showing fairly larger grains (2–3 μm) as compared to Sm-doped barium zirconate. The electrical conductivity under wet N2 (\( {P}_{{\mathrm{H}}_2\mathrm{O}} \) = 0.031 atm) environment has been calculated using electrochemical impedance spectroscopy. The conductivity improved gradually with the increase in doping proportions, in case of both the dopants. However, the conductivity of Dy-doped BaZrO3 is found one order higher as compared to Sm-doped BaZrO3, for any fixed doping concentration. The total conductivity of 20% Dy-doped barium zirconate is found to be 4.15 × 10−3 S/cm at 600 °C which is the highest among the studied compositions. The high proton conductivity suggests the material suitable for solid oxide fuel cell electrolyte at intermediate temperatures.

Keywords

Proton conductivity Barium zirconate Perovskite Ceramics 

Notes

Acknowledgments

The author (Avishek Satapathy) would like to thank the council of scientific and industrial research (CSIR), Govt. of India for providing senior research fellowship [09/554/(0043)/2018-EMR-I)]. The corresponding author, Dr. Ela Sinha, thank the DST-SERB, Govt. of India for funding the research under project code EMR/2016/001582. The authors also thank the central instrumentation facility, Birla Institute of Technology, Mesra for providing necessary infrastructure to carry out our research.

References

  1. 1.
    Malavasi L, Fisher CAJ, Islam MS (2010) Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chem Soc Rev 39(11):4370–4387CrossRefPubMedGoogle Scholar
  2. 2.
    Phair JW, Badwal SPS (2006) Review of proton conductors for hydrogen separation. Ionics 12(2):103–115CrossRefGoogle Scholar
  3. 3.
    Badwal SPS, Giddey S, Munnings C (2013) Hydrogen production via solid electrolytic routes. Wiley Interdisciplinary Reviews: Energy and Environment 2(5):473–487CrossRefGoogle Scholar
  4. 4.
    Zuo C, Liu M, Liu M (2012) Solid oxide fuel cells. Sol-Gel processing for conventional and alternative energy advances in Sol-Gel derived materials and technologies:7–36. doi: https://doi.org/10.1007/978-1-4614-1957-0_2 CrossRefGoogle Scholar
  5. 5.
    Mahato N, Banerjee A, Gupta A, Omar S, Balani K (2015) Progress in material selection for solid oxide fuel cell technology: a review. Prog Mater Sci 72:141–337CrossRefGoogle Scholar
  6. 6.
    Agarkova EA, Borik MA, Volkova TV, Kulebyakin AV, Kuritsyna IE, Lomonova EE, Milovich FO, Myzina VA, Ryabochkina PA, Tabachkova NY (2019) Ionic conductivity, phase composition, and local defect structure of ZrO2-Gd2O3system solid solution crystals. J Solid State Electrochem 23(9):2619–2626.  https://doi.org/10.1007/s10008-019-04357-8 CrossRefGoogle Scholar
  7. 7.
    Bi L, Boulfrad S, Traversa E (2015) Reversible solid oxide fuel cells (R-SOFCs) with chemically stable proton-conducting oxides. Solid State Ionics 275:101–105CrossRefGoogle Scholar
  8. 8.
    Kharton VV, Yaremchenko AA, Naumovich EN, Marques FMB (2000) Research on the electrochemistry of oxygen ion conductors in the former Soviet Union. J Solid State Electrochem 4(5):243–266CrossRefGoogle Scholar
  9. 9.
    Y-b Z, J-h L, Zeng Q, Liu W, C-s C (2009) Estimation of oxygen ionic conductivity in nickel-zirconia composite by oxygen permeation method. J Solid State Electrochem 14(6):945–949Google Scholar
  10. 10.
    Ricote S, Bonanos N, Manerbino A, Coors WG (2012) Conductivity study of dense BaCexZr(0.9−x)Y0.1O(3−δ) prepared by solid state reactive sintering at 1500 °C. Int J Hydrog Energy 37(9):7954–7961CrossRefGoogle Scholar
  11. 11.
    Yan N, Zeng Y, Shalchi B, Wang W, Gao T, Rothenberg G, Luo J-l (2015) Discovery and understanding of the ambient-condition degradation of doped barium cerate proton-conducting Perovskite oxide in solid oxide fuel cells. J Electrochem Soc 162(14):F1408–F1414CrossRefGoogle Scholar
  12. 12.
    Sawant P, Varma S, Wani BN, Bharadwaj SR (2012) Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as electrolyte for proton conducting SOFC. Int J Hydrog Energy 37(4):3848–3856CrossRefGoogle Scholar
  13. 13.
    Park K-Y, Lee T-H, Kim J-T, Lee N, Seo Y, Song S-J, Park J-Y (2014) Highly conductive barium zirconate-based carbonate composite electrolytes for intermediate temperature-protonic ceramic fuel cells. J Alloys Compd 585:103–110CrossRefGoogle Scholar
  14. 14.
    Bohn HG, Schober T (2004) Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95. J Am Ceram Soc 83(4):768–772CrossRefGoogle Scholar
  15. 15.
    Park K-Y, Seo Y, Kim KB, Song S-J, Park B, Park J-Y (2015) Enhanced proton conductivity of yttrium-doped barium zirconate with sinterability in protonic ceramic fuel cells. J Alloys Compd 639:435–444CrossRefGoogle Scholar
  16. 16.
    Laidoudi M, Talib IA, Omar R (2000) Study of proton conduction in thulium-doped barium zirconates at high temperatures. J Phys D Appl Phys 33(23):3112–3120CrossRefGoogle Scholar
  17. 17.
    Iwahara H, Yajima T, Hibino T, Ozaki K, Suzuki H (1993) Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 61(1–3):65–69CrossRefGoogle Scholar
  18. 18.
    Gorelov VP, Balakireva VB, Kleshchev YN, Brusentsov VP (2001) Preparation and electrical Conductivityof BaZr1–xRxO3–a (R = Sc, Y, Ho, Dy, Gd, In). Inorg Mater 37(5):535–538CrossRefGoogle Scholar
  19. 19.
    Laidoudi M, Talib IA, Omar R (2002) Investigation of the bulk conductivity of BaZr0.95M0.05O3-α (M =Al, Er, Ho, Tm, Yb and Y) under wet N2. J Phys D Appl Phys 35(4):397–401CrossRefGoogle Scholar
  20. 20.
    Tao S, Irvine JTS (2007) Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325°C. J Solid State Chem 180(12):3493–3503CrossRefGoogle Scholar
  21. 21.
    Yamazaki Y, Hernandez-Sanchez R, Haile SM (2009) High total proton conductivity in large-grained yttrium-doped barium zirconate. Chem Mater 21(13):2755–2762CrossRefGoogle Scholar
  22. 22.
    Yamazaki Y, Blanc F, Okuyama Y, Buannic L, Lucio-Vega JC, Grey CP, Haile SM (2013) Proton trapping in yttrium-doped barium zirconate. Nature materials 12:647. 23. Duval SBC, Holtappels P, Stimming U, Graule T (2008) effect of minor element addition on the electrical properties of BaZr0.9Y0.1O3−δ. Solid State Ionics 179(21–26):1112–1115Google Scholar
  23. 23.
    Han D, Shinoda K, Sato S, Majima M, Uda T (2015) Correlation between electroconductive and structural properties of proton conductive acceptor-doped barium zirconate. J Mater Chem A 3(3):1243–1250CrossRefGoogle Scholar
  24. 24.
    Han D, Hatada N, Uda T (2016) Microstructure, proton concentration and proton conductivity of barium zirconate doped with Ho, Er, Tm and Yb. J Electrochem Soc 163(6):F470–F476CrossRefGoogle Scholar
  25. 25.
    Ahmed I, Eriksson S, Ahlberg E, Knee C, Karlsson M, Matic A, Engberg D, Borjesson L (2006) Proton conductivity and low temperature structure of In-doped BaZrO3. Solid State Ionics 177(26–32):2357–2362CrossRefGoogle Scholar
  26. 26.
    Azad A-M, Subramaniam S, Dung TW (2002) On the development of high density barium metazirconate (BaZrO3) ceramics. J Alloys Compd 334(1–2):118–130CrossRefGoogle Scholar
  27. 27.
    Ahmed I, Eriksson S, Ahlberg E, Knee C, Gotlind H, Johansson L, Karlsson M, Matic A, Borjesson L (2007) Structural study and proton conductivity in Yb-doped BaZrO3. Solid State Ionics 178(7–10):515–520CrossRefGoogle Scholar
  28. 28.
    Satapathy A, Sinha E (2019) A comparative proton conductivity study on Yb-doped BaZrO3 perovskite at intermediate temperatures under wet N2 environment. J Alloys Compd 772:675–682CrossRefGoogle Scholar
  29. 29.
    Satapathy A, Sinha E, Rout SK (2019) Investigation of proton conductivity in Sc and Yb co-doped barium zirconate ceramics. Materials Research Express 6(5):056305CrossRefGoogle Scholar
  30. 30.
    Roy AK, Singh A, Kumari K, Amar Nath K, Prasad A, Prasad K (2012) Electrical properties and AC conductivity of (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramic. ISRN Ceramics 2012:1–10CrossRefGoogle Scholar
  31. 31.
    Souza ECCd, Muccillo R (2010) Properties and applications of perovskite proton conductors. Mater Res 13:385–394CrossRefGoogle Scholar
  32. 32.
    Stokes SJ, Islam MS (2010) Defect chemistry and proton-dopant association in BaZrO3 and BaPrO3. J Mater Chem 20(30):6258CrossRefGoogle Scholar
  33. 33.
    Ahmed I, Kinyanjui FG, Rahman SMH, Steegstra P, Eriksson SG, Ahlberg E (2010) Proton conductivity in mixed B-site doped perovskite oxide BaZr0.5In0.25Yb0.25O3−δ. Journal of The Electrochemical Society 157 (12):B1819Google Scholar
  34. 34.
    Ahmed I, Knee CS, Eriksson S-G, Ahlberg E, Karlsson M, Matic A, Börjesson L (2008) Proton conduction in perovskite oxide BaZr0.5Yb0.5O3−δ prepared by wet chemical synthesis route. Journal of The Electrochemical Society 155 (11):P97Google Scholar
  35. 35.
    Gu Y-J, Liu Z-G, Ouyang J-H, Zhou Y, Yan F-Y (2012) Synthesis, structure and electrical conductivity of BaZr1–xDyxO3–δ ceramics. Electrochim Acta 75:332–338CrossRefGoogle Scholar
  36. 36.
    Han D, Uda T, Nose Y, Okajima T, Murata H, Tanaka I, Shinoda K (2012) Tetravalent dysprosium in a perovskite-type oxide. Adv Mater 24(15):2051–2053CrossRefPubMedGoogle Scholar
  37. 37.
    Han D, Shinoda K, Uda T, Brennecka G (2014) Dopant site occupancy and chemical expansion in rare earth-doped barium zirconate. J Am Ceram Soc 97(2):643–650CrossRefGoogle Scholar
  38. 38.
    Satapathy A, Sinha E, Sonu BK, Rout SK (2019) Conduction and relaxation phenomena in barium zirconate ceramic in wet N2 environment. J Alloys Compd 811:152042CrossRefGoogle Scholar
  39. 39.
    Ahmed I, Karlsson M, Eriksson S-G, Ahlberg E, Knee CS, Larsson K, Azad AK, Matic A, Börjesson L (2008) Crystal structure and proton conductivity of BaZr0.9Sc0.1O3−δ. J Am Ceram Soc 91(9):3039–3044CrossRefGoogle Scholar
  40. 40.
    Tsur Y, Dunbar TD, Randall CA (2001) Crystal and defect chemistry of rare earth cations in BaTiO3. J Electroceram 7(1):25–34CrossRefGoogle Scholar
  41. 41.
    Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 32(5):751–767CrossRefGoogle Scholar
  42. 42.
    Jia YQ (1991) Crystal radii and effective ionic radii of the rare earth ions. J Solid State Chem 95(1):184–187CrossRefGoogle Scholar
  43. 43.
    Ricote S, Hudish G, O'Brien JR, Perry NH (2019) Non stoichiometry and lattice expansion of BaZr0.9Dy0.1O3-δ in oxidizing atmospheres. Solid State Ionics 330:33–39CrossRefGoogle Scholar
  44. 44.
    Nasri S, Ben Hafsia AL, Tabellout M, Megdiche M (2016) Complex impedance, dielectric properties and electrical conduction mechanism of La0.5Ba0.5FeO3−δ perovskite oxides. RSC Adv 6(80):76659–76665CrossRefGoogle Scholar
  45. 45.
    Shoar Abouzari MR, Berkemeier F, Schmitz G, Wilmer D (2009) On the physical interpretation of constant phase elements. Solid State Ionics 180(14–16):922–927CrossRefGoogle Scholar
  46. 46.
    Wang WG, Li XY (2017) Impedance and dielectric relaxation spectroscopy studies on the calcium modified Na0.5Bi0.44Ca0.06TiO2.97 ceramics. AIP advances 7 (12):125318Google Scholar
  47. 47.
    Barsoukov E, Macdonald JR (2005) Impedance spectroscopy: theory, experiment, and applications, 2nd edn John Wiley & sonsCrossRefGoogle Scholar
  48. 48.
    Almond DP, West AR (1983) Impedance and modulus spectroscopy of “real” dispersive conductors. Solid State Ionics 11(1):57–64CrossRefGoogle Scholar
  49. 49.
    Lacz A (2016) Effect of microstructure on chemical stability and electrical properties of BaCe0.9Y0.1O3 − δ. Ionics 22(8):1405–1414CrossRefGoogle Scholar
  50. 50.
    Braun A, Duval S, Ried P, Embs J, Juranyi F, Strässle T, Stimming U, Hempelmann R, Holtappels P, Graule T (2008) Proton diffusivity in the BaZr0.9Y0.1O3−δ proton conductor. J Appl Electrochem 39(4):471–475CrossRefGoogle Scholar
  51. 51.
    Hempelmann R (1996) Hydrogen diffusion mechanism in proton conducting oxides. Phys B Condens Matter 226(1–3):72–77CrossRefGoogle Scholar
  52. 52.
    Chen Q, Braun A, Yoon S, Bagdassarov N, Graule T (2011) Effect of lattice volume and compressive strain on the conductivity of BaCeY-oxide ceramic proton conductors. J Eur Ceram Soc 31(14):2657–2661CrossRefGoogle Scholar
  53. 53.
    Noferini D, Frick B, Koza MM, Karlsson M (2018) Proton jump diffusion dynamics in hydrated barium zirconates studied by high-resolution neutron backscattering spectroscopy. J Mater Chem A 6(17):7538–7546CrossRefGoogle Scholar
  54. 54.
    Björketun ME, Sundell PG, Wahnström G (2007) Effect of acceptor dopants on the proton mobility inBaZrO3: a density functional investigation. Phys Rev B 76(5):054307CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBirla Institute of TechnologyRanchiIndia

Personalised recommendations