Combined parametric optimization of P3HT: PC70BM films for efficient bulk-heterojunction solar cells

  • Hafsa SiddiquiEmail author
  • Mohammad Ramzan Parra
  • Padmini Pandey
  • M. S. Qureshi
  • Fozia Zia HaqueEmail author
Original Paper


In this report, the effects of photoactive blend compositions, film thicknesses, and annealing conditions on the P3HT:PC70BM solar cells performance and reproducibility was investigated. The performance of prepared devices was described by examining their absorption spectra, current-voltage characteristics and external quantum efficiency (EQE). The thickness of active layer was achieved as 190 nm, 125 nm, and 90 nm, by maintaining the spin speed. Current density (Jsc) slightly increases from 6.39 to 7.15 mA/cm2 with increase in thickness from 90 to 125 nm; however, with further increase in film thickness (190 nm), the Jsc was reduced to 4.39 mA/cm2. To optimize the device performance, four different compositions of PC70BM (1:0.6, 1:0.8, 1:1, and 1:12) were investigated at the most favorable film thickness ~ 125 nm. The effect of different PC70BM compositions on photovoltaic performance was demonstrated by X-ray diffraction (XRD) and Raman measurements that illuminated modification in structural properties. Additionally, annealing condition led to achieve the good phase separation for efficient charge separation and transport within P3HT: PCBM film which further leads to increased efficiency (PCE ~ 3.31%). These effects deliver valued facts for the choices of PC70BM amount in P3HT:PC70BM system, and this efficient device optimization might be useful in other efficient photovoltaic systems for better performance through excellent reproducibility.

Graphical Abstract


P3HT:PC70BM Solar cells Photoactive layer Composition Film thickness 



The authors would like to acknowledge the Director of the CSIR-NCL, Pune, and pleased to acknowledge Dr. Kothandam Krishnamoorthy, Scientist, Polymers and Advanced Materials Laboratory, CSIR-NCL, Pune for OPV fabrication and testing. The authors are thankful to Mr. Sundaresan Chithiravel for their support and help during OPV fabrication and testing. The authors are grateful to the Director of the UGC-DAE-CSR, Indore Centre, for performing XRD and Raman measurements.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no competing interests.

Supplementary material

10008_2019_4421_MOESM1_ESM.docx (95 kb)
ESM 1 (DOCX 94 kb)


  1. 1.
    Bahrami A, Mohammadnejad S, Soleimaninezhad S (2013) Photovoltaic cells technology: principles and recent developments. Opt Quant Electron 45:161–197CrossRefGoogle Scholar
  2. 2.
    Morvillo P, Grimaldi AI, Diana R, Loffredo F, Villani F (2013) Study of the microstructure of inkjet-printed P3HT:PCBM blend for photovoltaic applications. J Mater Sci 48(7):2920–2927CrossRefGoogle Scholar
  3. 3.
    Ahmad K, Mobin SM (2017) Graphene oxide based planar heterojunction perovskite solar cell under ambient condition. New J Chem 41:14253–14258CrossRefGoogle Scholar
  4. 4.
    Siddiqui H 2019). Modification of physical and chemical properties of titanium dioxide (TiO<sub>2</sub>) by ion implantation for dye sensitized solar cells [online first], IntechOpen, Available from:
  5. 5.
    Izawa S, Perrot A, Lee J-H, Hiramoto M (2019) Organic pn homojunction solar cell. Org Electron 71:45–49CrossRefGoogle Scholar
  6. 6.
    Duan L, Elumalai NK, Zhang Y, Uddin A (2019) Progress in non-fullerene acceptor based organic solar cells. Sol Energy Mater Sol Cells 193:22–65CrossRefGoogle Scholar
  7. 7.
    Yu W, Xu B, Dong Q, Zhou Y, Zhang J, Tian W, Yang B (2010) A two-step method combining electrodepositing and spin-coating for solar cell processing. J Solid State Electrochem 14:1051–1056CrossRefGoogle Scholar
  8. 8.
    Zoromba MS, Abdel-Aziz MH, Bassyouni M, Bahaitham H, Al-Hossainy AF (2018) Poly(o-phenylenediamine) thin film for organic solar cell applications. J Solid State Electrochem 22:3673–3687CrossRefGoogle Scholar
  9. 9.
    Ramírez O, Cabrera V, Reséndiz LM (2014) Optimum ratio of electron-to-hole mobility in P3HT:PCBM organic solar cells. Opt Quant Electron 46:1291–1296CrossRefGoogle Scholar
  10. 10.
    Vlamidis Y, Lanzi M, Salatelli E, Gualandi I, Fraboni B, Setti L (2015) Electrodeposition of PEDOT perchlorate as an alternative route to PEDOT:PSS for the development of bulk heterojunction solar cells. J Solid State Electrochem 19:1685–1693CrossRefGoogle Scholar
  11. 11.
    Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip H-L, Cao Y, Chen Y (2018) Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 361(6407):1094–1098PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115(23):12666–12731PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Movla H, Shahalizad A and Abad A.R.N (2015) Influence of active region thickness on the performance of bulk heterojunction solar cells: electrical modeling and simulation, Opt Quant Electron 47: 621–632CrossRefGoogle Scholar
  14. 14.
    Ans M, Ayub K, Muhammad S, Iqbal J (2019) Development of fullerene free acceptors molecules for organic solar cells: a step way forward toward efficient organic solar cells. Comput Theor Chem 1161:26–38CrossRefGoogle Scholar
  15. 15.
    Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Mater 13(1):85–88Google Scholar
  16. 16.
    Kadem B, Hassan A, Cranton W (2016) Efficient P3HT:PCBM bulk heterojunction organic solar cells; effect of post deposition thermal treatment. J Mater Sci Mater Electron 27:7038–7048CrossRefGoogle Scholar
  17. 17.
    Chirvase D, Parisi J, Hummelen JC, Dyakonov V (2004) Influence of nano morphology on the photovoltaic action of polymer-fullerene composites. Nanotechnology 15:1317–1323CrossRefGoogle Scholar
  18. 18.
    Huang J, Li G, Yang Y (2005) Influence of composition and heat-treatment on the charge transport properties of poly(3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester blends. Appl Phys Lett 87:112105CrossRefGoogle Scholar
  19. 19.
    Li G, Shrotriya V, Yao Y, Yang Y (2005) Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene). J Appl Phys 98:043704CrossRefGoogle Scholar
  20. 20.
    Reyes-Reyes M, Kim K, Carroll D. L (2005) High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends, Appl Phys Lett 87: 083506CrossRefGoogle Scholar
  21. 21.
    Nazerdeylami S, Rezagholipour DH (2016) Influence of exponential tail states on photovoltaic parameters and recombination of bulk heterojunction organic solar cells: an optoelectronic simulation. Opt Quant Electron 48:260CrossRefGoogle Scholar
  22. 22.
    Rahman DMA, Hameed MFO, Obayya SSA (2015) Light harvesting improvement of polymer solar cell through nanohole photoactive layer. Opt Quant Electron 47:1443–1449CrossRefGoogle Scholar
  23. 23.
    Ma W, Yang C, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15:1617–1622CrossRefGoogle Scholar
  24. 24.
    Malgas GF, Motaung DE, Arendse CJ (2012) Temperature-dependence on the optical properties and the phase separation of polymer–fullerene thin films. J Mater Sci 47:4282–4289CrossRefGoogle Scholar
  25. 25.
    Mihailetchi V D, Xie HX, Boer B. de, Popescu L M, Hummelen JC, Blom PWM, Koster LJA (2006) Origin of the enhanced performance in poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester solar cells upon slow drying of the active layer. Appl Phys Lett 89: 012107CrossRefGoogle Scholar
  26. 26.
    Kim Y, Choulis SA, Nelson J, Bradley DDC, Cook S, Durrant JR (2005) Composition and annealing effects in polythiophene/fullerene solar cells. J Mater Sci 40:1371–1376CrossRefGoogle Scholar
  27. 27.
    Park JH, Kim JS, Lee JH, Lee WH, Cho K (2009) Effect of annealing solvent solubility on the performance of poly(3-hexylthiophene)/methanofullerene solar cells. J Phys Chem C 113(40):17579–17584CrossRefGoogle Scholar
  28. 28.
    Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y (2007) Solvent annealing effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv Funct Mater 17:1636–1644CrossRefGoogle Scholar
  29. 29.
    Grzibovskis R, Vembris A (2018) Energy level determination in bulk heterojunction systems using photoemission yield spectroscopy: case of P3HT:PCBM. J Mater Sci 53:7506–7515CrossRefGoogle Scholar
  30. 30.
    Supriyanto A, Mustaqim A, Agustin M, Ramelan AH, Suyitno RES, Yofentina NF (2016) Fabrication of organic solar cells with design blend P3HT: PCBM variation of mass ratio. IOP Conf Ser: Mater Sci Eng 107:012050CrossRefGoogle Scholar
  31. 31.
    Dang MT, Wantz G, Bejbouji H, Urien M, Dautel OJ, Vignau L, Hirsch L (2011) Polymeric solar cells based on P3HT:PCBM role of the casting solvent. Sol Energy Mater Sol Cells 95:3408–3418CrossRefGoogle Scholar
  32. 32.
    Güney HY, Avdan Z, Yetkin H (2019) Optimization of annealing temperature and the annealing effect on life time and stability of P3HT:PCBM-based organic solar cells. Mater Res Express 6:045103CrossRefGoogle Scholar
  33. 33.
    Munshi J, Ghumman UF, Iyer A, Dulal R, Chen W, Chien TY, Balasubramanian G (2019) Effect of polydispersity on the bulk-heterojunction morphology of P3HT: PCBM solar cells. J Polym Sci B Polym Phys 5:895–903CrossRefGoogle Scholar
  34. 34.
    Gusain A, Faria RM, Miranda PB (2019) Polymer solar cells-interfacial processes related to performance issues. Front Chem 7:61PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Motaung DE, Malgas GF, Nkosi SS, Mhlongo GH, Mwakikunga BW, Malwela T, Arendse CJ, Muller TFG, Cummings FR (2013) Comparative study: the effect of annealing conditions on the properties of P3HT:PCBM blends. J Mater Sci 48:1763–1778CrossRefGoogle Scholar
  36. 36.
    Siddiqui H (2019) Lead-free perovskite quantum structures towards the efficient solar cell. Mater Lett 249:99–103CrossRefGoogle Scholar
  37. 37.
    Cai W, Gong X, Cao Y (2014) Polymer solar cells: recent development and possible routes for improvement in the performance. Sol Energy Mater Sol Cells 94:114–127CrossRefGoogle Scholar
  38. 38.
    Janssen RAJ, Nelson J (2013) Factors limiting device efficiency in organic photovoltaics. Adv Mater 25(13):1847–1858PubMedCrossRefGoogle Scholar
  39. 39.
    Reséndiz L, Balderrama VS, Lastra G, Ramírez M, Cabrera V, Estrada M (2019) Optimization of PFN thickness in inverted high-performance PTB7:PC70BM solar cells. Solid State Electron 153:33–36CrossRefGoogle Scholar
  40. 40.
    Sauvé G (2019) Designing alternative non-fullerene molecular electron acceptors for solution-processable organic photovoltaics. Chem Rec 19(6):1078–1092PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Li Z, Wong HC, Huang Z, Zhong H, Tan CH, Tsoi WC, Kim JS, Durrant JR, Cabral JT (2013) Performance enhancement of fullerene-based solar cells by light processing. Nat Commun 4:2227PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Treat ND, Shuttle CG, Toney MF, Hawker CJ, Chabinyc ML (2011) In situ measurement of power conversion efficiency and molecular ordering during thermal annealing in P3HT:PCBM bulk heterojunction solar cells. J Mater Chem 21:15224–15231CrossRefGoogle Scholar
  43. 43.
    Chi D, Qu S, Wang Z, Wang J (2014) High efficiency P3HT:PCBM solar cells with an inserted PCBM layer. J Mater Chem C 2:4383CrossRefGoogle Scholar
  44. 44.
    Velazquez AAM, Canto-Reyes D, Mendez-Gamboa JA, Acosta M (2019) Optical absorption enhancement of P3HT:PCBM films through nanocavities using polystyrene as a template. Mater Lett 245:65–67CrossRefGoogle Scholar
  45. 45.
    Singh I, Madhwal D, Kumar J, Bhatia CS, Bhatnagar PK, Mathura PC (2011) Effect of thermal annealing on the efficiency of poly (3-hexylthiphone):[6,6]-phenyl-C61-butyric acid methyl ester bulk heterojunction solar cells. Journal of Nanophotonics 5(1):053504CrossRefGoogle Scholar
  46. 46.
    Movla H, Rafi AM, Rafi NM (2015) A model for studying the performance of P3HT:PCBM organic bulk heterojunction solar cells. Optik 126(15–16):1429–1432CrossRefGoogle Scholar
  47. 47.
    Kim JY, Noh S, Kwak J, Lee C (2013) Analysis of annealing process on P3HT:PCBM-based polymer solar cells using optical and impedance spectroscopy. J Nanosci Nanotechnol 13(5):3360–3364PubMedCrossRefGoogle Scholar
  48. 48.
    Taibia I, Belghachi A, Abid H (2016) Effect of trapping and temperature on the performance of P3HT:PCBM organic solar cells. Optik 27(20):8592–8599CrossRefGoogle Scholar
  49. 49.
    Chang SC, Hsiao YJ, Li TS (2015) Selecting annealing temperature of P3HT/PCBM incorporated with nano-diamonds using thermal desorption spectroscopy. Int J Electrochem Sci 10:1658–1668Google Scholar
  50. 50.
    Scholes DT, Yee PY, Lindemuth JR, Kang H, Onorato J, Ghosh R, Luscombe CK, Spano FC, Tolbert SH, Schwartz BJ (2017) The effects of crystallinity on charge transport and the structure of sequentially processed F4TCNQ-doped conjugated polymer films. Adv Funct Mater 27(44):1702654CrossRefGoogle Scholar
  51. 51.
    Parra MR, Pandey P, Siddiqui H, Sudhakar V, Krishnamoorthy K, Haque FZ (2019) Evolution of ZnO nanostructures as hexagonal disk: implementation as photoanode material and efficiency enhancement in Al: ZnO based dye sensitized solar cells. Appl Surf Sci 470:1130–1138CrossRefGoogle Scholar
  52. 52.
    Padmini P, Parra MR, Haque FZ, Kurchania R (2017) Effects of annealing temperature optimization on the efficiency of ZnO nanoparticles photoanode-based dye sensitized solar cells. J Mater Sci Mater Electron 28:1537–1545CrossRefGoogle Scholar
  53. 53.
    Parra MR, Pandey P, Siddiqui H, Qadri SB, Haque FZ (2019) New-insight into the physical properties of Zn1-xBxO two dimensional hexagonal nanodisks: an efficient material for dye sensitized solar cells. Mater Lett 238:194–197CrossRefGoogle Scholar
  54. 54.
    Li S, Ye L, Zhao W, Yan H, Yang B, Liu D, Li W, Ade H, Hou J (2018) A wide band gap polymer with a deep highest occupied molecular orbital level enables 14.2% efficiency in polymer solar cells. J Am Chem Soc 140(23):7159–7167PubMedCrossRefGoogle Scholar
  55. 55.
    Wright M, Lin R, Tayebjee MJY, Conibeer G (2017) Effect of blend composition on bulk heterojunction organic solar cells: a review. Solar RRL 1:3–4CrossRefGoogle Scholar
  56. 56.
    Xu WL, Wang YB, Yang XY, Qin W, Hao XT (2018) Exploring charge transfer processes and crystallization dynamics in donor-acceptor crystals. Org Electron 58:105–110CrossRefGoogle Scholar
  57. 57.
    Xu WL, Wu B, Zheng F, Wang HB, Wang YZ, Bian FG, Hao XT, Zhu F (2015) Homogeneous phase separation in polymer: fullerene bulk heterojunction organic solar cells. Org Electron 25:266–274CrossRefGoogle Scholar
  58. 58.
    Falke S, Eravuchira P, Materny A, Lienau C (2011) Raman spectroscopic identification of fullerene inclusions in polymer/fullerene blends. J Raman Spectrosc 42(10):1897–1900CrossRefGoogle Scholar
  59. 59.
    Ramkia K, Venkatesh N, Sathiyan G, Thangamuthu R, P. Sakthivel (2019) A comprehensive review on the reasons behind low power conversion efficiency of dibenzo derivatives based donors in bulk heterojunction organic solar cells. Org Electron 73: 182–204CrossRefGoogle Scholar
  60. 60.
    Sun Y, Liu J, Ding Y, Han Y (2013) Controlling the surface composition of PCBM in P3HT/PCBM blend films by using mixed solvents with different evaporation rates. Chin J Polym Sci 31(7):1029–1037CrossRefGoogle Scholar
  61. 61.
    Kadem B, Hassan A (2015) The effect of fullerene derivatives ratio on P3HT-based organic solar cells. Energy Procedia 74:439–445CrossRefGoogle Scholar
  62. 62.
    Kalita G, Masahiro M, Koichi W, Umeno M (2010) Nanostructured morphology of P3HT:PCBM bulk heterojunction solar cells. Solid State Electron 54(4):447–451CrossRefGoogle Scholar
  63. 63.
    Duan Z, Fujii S, Liu Z, Okukawa T, Yoshida A, Yanagi Y, Kataura H, Zhao G, Nishioka Y (2013) Flexible organic solar cells based on spin-coated blend films of a phenylene-thiophene oligomer derivative and PCBM. Mol Cryst Liq Cryst 578:78–87CrossRefGoogle Scholar
  64. 64.
    Lee SJ, Kim HP, Yusoff AB, Jang J (2015) Understanding the role of organic polar solvent induced nanoscale morphology and electrical evolutions of P3HT:PCBM composite film. Org Electron 25:50–56CrossRefGoogle Scholar
  65. 65.
    Xuan Yu X, Yu X, Hu ZJ, Zhao G, Zhao Y (2013) Efficiency enhancement of polymer solar cells by post-additional annealing treatment. Optoelectron Lett 9(4):274–277CrossRefGoogle Scholar
  66. 66.
    Agbolaghi S, Zenoozi S (2017) A comprehensive review on poly(3-alkylthiophene)-based crystalline structures, protocols and electronic applications. Org Electron 51:362–403CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Optical Nanomaterial LabDepartment of Physics, Maulana Azad National Institute of TechnologyBhopalIndia
  2. 2.Department of PhysicSha-Shib College of Science and ManagementBhopalIndia
  3. 3.Department of PhysicsGovernment Degree College Boys SoporeSoporeIndia
  4. 4.Department of PhysicsSavitribai Phule Pune UniversityPuneIndia

Personalised recommendations